
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Venus: Scalable Real-time Spatial Queries on
Microblogs with Adaptive Load Shedding

Amr Magdy∗, Mohamed F. Mokbel∗, Sameh Elnikety§, Suman Nath§ and Yuxiong He§

∗Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455
§Microsoft Research, Redmond, WA 98052-6399

Abstract—Microblogging services have become among the most popular services on the web in the last few years. This led to
significant increase in data size, speed, and applications. This paper presents Venus; a system that supports real-time spatial queries
on microblogs. Venus supports its queries on a spatial boundary R and a temporal boundary T , from which only the top-k microblogs
are returned in the query answer based on a spatio-temporal ranking function. Supporting such queries requires Venus to digest
hundreds of millions of real-time microblogs in main-memory with high rates, yet, it provides low query responses and efficient memory
utilization. To this end, Venus employs: (1) an efficient in-memory spatio-temporal index that digests high rates of incoming microblogs
in real time, (2) a scalable query processor that prune the search space, R and T , effectively to provide low query latency on millions of
items in real time, and (3) a group of memory optimization techniques that provide system administrators with different options to save
significant memory resources while keeping the query accuracy almost perfect. Venus memory optimization techniques make use of
the local arrival rates of microblogs to smartly shed microblogs that are old enough not to contribute to any query answer. In addition,
Venus can adaptively, in real time, adjust its load shedding based on both the spatial distribution and the parameters of incoming query
loads. All Venus components can accommodate different spatial and temporal ranking functions that are able to capture the importance
of each dimension differently depending on the applications requirements. Extensive experimental results based on real Twitter data
and actual locations of Bing search queries show that Venus supports high arrival rates of up to 64K microblogs/second and average
query latency of 4 msec.

Index Terms—Microblogs, Spatial, Location, Temporal, Performance, Efficiency, Scalability, Memory Optimization, Social.

✦

1 INTRODUCTION

Social media websites have grabbed big attention in the lastdecade
due to its growing popularity and unprecedentedly large user base.
The new wave of user-interactive microblogging services, e.g.,
tweets, comments on Facebook or news websites, or Foursquare
check-in’s, has become the clear frontrunner in the social media
race with the largest number of users ever and highest users
activity in consistent rates. For example, Twitter has 288+Million
active users who generate 500+ Million daily tweets [1], [2],
while Facebook has 1.35+ Billion users who post 3.2+ Billion
daily comments [3]. Motivated by the advances in wireless com-
munication and the popularity of GPS-equipped mobile devices,
microblogs service providers have enabled users to attach location
information with their posts. Thus, Facebook added the options
of location check-ins andnear where users can state a nearby
location of their status messages, Twitter automatically captures
the GPS coordinates from mobile devices, per user permission,
and Foursquare features are all around the location information
and the whereabouts of its users. Consequently, a plethora of
location information is currently available in microblogs.

We exploit of the availability of location information in mi-
croblogs to support spatio-temporal search queries where users
are able to browse recent microblogs near their locations inreal
time. Users of our proposed queries include news agencies (e.g.,
CNN and Reuters) to have a first-hand knowledge on events in
a certain area, advertising services to serve geo-targetedads to

. ‡ The work of the first two authors is partially supported by the National
Science Foundation, USA, under Grants IIS-0952977 and IIS-1218168.

their customers based on nearby events, or individuals who want
to know ongoing activities in a certain area. For example, inApril
2013, Los Angeles Times reported [4] how people rush to Twitter
for real-time breaking news about Boston Marathon explosions.
Such users may not know the appropriate keyword or hash tag
to search for. Instead, they want to know the recently posted
microblogs in a certain particular area. Thus, our goal here is
not to replace the traditional keyword search in microblogs, but
rather to provide another important search option for localized
microblogs. The answer of our spatio-temporal queries can be fed
to other modules for further processing, which may include event
detection, keyword search, entity resolution, sentiment analysis,
or visualization.

In this paper, we presentVenus: a system for real-time support
of spatio-temporal queries on microblogs. Due to large numbers of
microblogs,Venuslimits its query answer to onlyk most relevant
microblogs so that it can be easily navigated by human users.
Microblog relevance is assessed based on a ranking functionF
that combines the time recency and the spatial proximity to the
querying user. In addition,Venusexploits the fact that the more
recent microblogs data, the more important for real-time queries
to bound its search space to include only those microblogs that
have arrived during the lastT time units within a spatial query
rangeR. Thus,Venususers can post queries toget a set of top-k
relevant microblogs, ranked by a spatio-temporal functionF, that
are posted within a spatial range R in the last T time units.

To support its queries,Venusfaces two main challenges: high
arrival rates of real-time microblogs and the need for low query
response while searching millions of data items. Both challenges

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

call for relying on only main-memory indexing to digest and
query real-time microblogs. Hence,Venusemploys an in-memory
partial pyramid index [5], equipped with efficient bulk insertion,
bulk deletion, speculative cell splitting, and lazy cell merging
operations that make the index able to digest the high arrival
rates of incoming microblogs. Incoming queries efficientlyexploit
the in-memory index through spatio-temporal pruning techniques
that minimize the number of visited microblogs to return thefinal
answer.

Venuscan employ different ranking functions to be able to
serve requirements of different applications. Based on a certain
ranking function, the differentVenuscomponents are optimized for
preset default values ofk, R, T , andα. Queries with less values
than the default can still be satisfied with the same performance.
Yet, queries with higher values may encounter higher cost as
they may need to visit a secondary storage. This goes along with
the design choices of major web services, e.g., Bing and Google
return, by default, the top-k (k=10) most relevant search results,
while Twitter gives the most recentk (k=20) tweets to a user upon
logging on. If a user would like to get more thank results, an extra
query response time will be paid.

As main-memory is a scarce resource, relying on main-
memory indexing requires efficient management of the available
memory resources. Although storing and indexing all incoming
microblogs from the last defaultT time units ensures that all
incoming queries will be satisfied from in-memory contents,
which may require very large memory resources, which can be
prohibitively expensive. Hence, we propose effective memory
optimization techniques: (1) We analytically develop anindex size
tuning technique that achieves significant memory savings (up to
50%) without sacrificing the query answer quality (more than99%
accuracy). The main idea is to exploit the diversity of arrival rates
per regions. For example, city centers have higher arrival rates
than suburban areas. Hence, the top-k microblogs would have
arrived more recently in city centers than suburban areas. We then
maintain only the items that may appear in user queries and delete
items that are old enough to be dominated by others. (2) For tight
memory configurations, we provide a parametrizedload shedding
technique that trades significant reduction in the memory footprint
(up to 75% less storage) for a reasonable loss in query accuracy
(up to 8% accuracy loss). The idea is to expel from memory a
set of victim microblogs that are less likely to contribute to a
query answer. (3) Building on our parametrized load shedding
technique, we develop two parameter-freeadaptive load shedding
techniques that give the option to automatically tune the load
shedding in different spatial regions adaptively with the incoming
query loads. These techniques catch the spatial distribution of the
incoming queries as well as the spatial access patterns of the stored
microblogs so that they bring the storage overhead to its minimal
levels (up to 80% less storage) while allow to answer querieswith
almost perfect accuracy (more than 99% in all cases).

Venus is the successor ofMercury [6], from which it is
distinguished by: (1) Optimizing its index, query processor, and
memory optimization techniques for different ranking functions,
that rank its top-k answers, so that it is flexible to serve a wide
variety of applications requirements. (2) Providing two parameter-
free adaptive load shedding techniques that exploit the spatial
distribution of incoming queries and data to automaticallytune
the load shedding adaptively so that they minimize the memory
footprint significantly without (almost) compromising thequery
accuracy. (3) Providing experimental study that compares the

performance of different system components, in terms of running
time, storage overhead, and query accuracy, with the most two
recognized ranking functions in the literature that satisfy most of
the practical applications requirements.

We evaluate the system experimentally using a real-time feed
of US tweets (via access to Twitter Firehose archive) and actual
locations of Bing web search queries. Our measurements show
thatVenussupports arrival rates of up to 64K microblogs/second,
average query latency of 4 msec, minimal memory footprints,and
a very high query accuracy of 99%. The contributions of this paper
are summarized as follows:

1) We provide a crisp definition for spatio-temporal search
queries over microblogs (Section 3).

2) We propose efficient spatio-temporal indexing/expelling
techniques that are capable of inserting/deleting mi-
croblogs with high rates (Section 4).

3) We introduce an efficient spatio-temporal query processor
that minimizes the number of visited microblogs to return
the final answer (Section 5).

4) We introduce anindex size tuningmodule that dynam-
ically adjusts the index contents to achieve significant
memory savings without sacrificing the query answer
quality (Section 6).

5) We introduce aload sheddingtechnique that trades signif-
icant reduction in memory footprint for a slight decrease
in query accuracy (Section 7).

6) We introduce twoadaptive load sheddingtechniques that
exploit the spatial distribution of incoming queries and
data to automatically tune the load shedding adaptively
(Section 8).

7) We provide experimental evidence, based on real system
prototype, microblogs, and queries, showing thatVenusis
scalable and accurate with minimal memory consumption
(Section 9).

2 RELATED WORK

Due to its widespread use, recent research efforts have explored
various research directions related to microblogs. This goes along
the way of the system stack starting from logging [7] and machine
learning techniques [8] to indexing [9], [10], [11], [12] and design-
ing a SQL-like query language interface [13]. In addition, several
efforts have focused on analyzing microblog data, which include
semantic and sentiment analysis [14], [15], [16], decisionmak-
ing [17], news extraction [18], event and trend detection [19], [20],
[21], [22], [23], understanding the characteristics of microblog
posts and search queries [24], [25], microblogs ranking [26], [27],
and recommending users to follow or news to read [28], [29].
Meanwhile, recent work [18], [30] exploited microblogs contents
to extract location information that is used to visualize microblog
posts on a map [31], [32] and model the relationship between user
interests, locations, and topics [33].

With such rich work in microblogs, the existing work on
real-time indexing and querying of microblogs locations [34],
[35] mostly address variations of aggregate queries, e.g.,frequent
keywords, that are posted on different regions. However, upto
our knowledge, there is no existing academic work that support
real-time indexing and querying to support non-aggregate spatial
queries on individual microblogs locations; which is the main
focus of this paper. Also, although Twitter search allows toembed
spatial parameters in the query, they do not reveal the details

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

GeotaggedMicroblog

Stream

AnswerUser

Microblogs

Insert

Query Trash

In-memory Index

Geotagging

Module

Update

Module

Query

Module

Search

Fig. 1. Venus system architecture.

of how they are supporting their spatial search and hence we
have no insights about their techniques. Generally, the twomost
related topics to our work aremicroblog search queriesandspatio-
temporal streams.
Microblog Search Queries. Real-time search on microblogs
spans keyword search [9], [10], [11], [12] and location-aware
search [6], [34], [35]. The difference of one technique overthe
other is mainly in the query type, accuracy, ranking function, and
memory management. Other thanMercury [6], the predecessor of
Venus, the existing location-aware search on microblogs mostly
address aggregate queries. None of these work have addressed
retrieving individual microblogs in real-time based on their loca-
tion information. On the other hand, spatial keyword searchis well
studied on web documents and web spatial objects [36], [37],[38],
[39], [40]. However, they use offline disk-based data partitioning
indexing, which cannot scale to support the dynamic nature and
arrival rates of microblogs [6], [9], [35], [41].
Spatio-temporal Streams. Microblogs can be considered as
a spatio-temporal stream with very high arrival rates, where
there exist a lot of work for spatio-temporal queries over data
streams [42], [43], [44], [45], [46]. However, the main focus
of such work is on continuous queries over moving objects. In
such case, a query is registered first, then its answer is composed
over time from the incoming data stream. Such techniques are
not applicable to spatio-temporal search queries on microblogs,
where we retrieve the answer from existing stored objects that
have arrived prior to issuing the query.

Venusshares with microblogs keyword search its environment
(i.e., queries look for existing data, in-memory indexing,and the
need for efficient utilization of the scarce memory resource), yet,
it is different from keyword search in terms of the functionality
it supports, i.e., spatio-temporal queries. In the meantime, Venus
shares similar functionality with spatio-temporal queries over data
streams, yet it is different in terms of the environment it supports,
i.e., query answer is retrieved from existing data rather than from
new incoming data that arrives later. Finally,Venusshares with
both keyword search and spatio-temporal queries the need to
support incoming data with high arrival rates and the need to
support real-time search query results.

3 SYSTEM OVERVIEW

This section gives an overview ofVenus system architecture,
supported queries, and ranking functions.

3.1 System Architecture

Figure 1 givesVenussystem architecture with three main modules
around an in-memory index, namely,geotagging, update, and
querymodules, described briefly below:
Geotagging module.This module receives the incoming stream of
microblogs, extracts the location of each microblog, and forwards

each microblog along with its extracted location to theupdate
module with the form: (ID, location, timestamp, content)that
represents the microblog identifier, location, issuing time, and
textual contents. Location is either a preciselatitude and longi-
tude coordinates (if known) or a Minimum Bounding Rectangle
(MBR). We extract the microblog locations through one or more
of the following: (1) Exact locations, if already associated with
the microblog, e.g., posted from a GPS-enabled device. (2)User
locations, extracted from the issuing user profile. (3)Content
locations, by parsing the microblog contents to extract location
information. If the microblog ends up to be associated with more
than one location, we output multiple versions of it as one per
each location. If no location information can be extracted,we
set the microblog MBR to the whole space. As we use existing
software packages and public datasets for geocoding and location
extraction, this module will not be discussed further in this paper.
Update module. The updatemodule ensures that all incoming
queries can be answered accurately from indexed in-memory
contents with the minimum possible memory consumption. This
is done through two main tasks: (1) Inserting newly coming
microblogs into the in-memory index structure. (2) Smartlyde-
ciding on the set of microblogs to expire from memory without
sacrificing the query answer quality. Details of index operations
and index size tuning are discussed in Sections 4, 6, 7, and 8.
Query module. Given a location search query, thequerymodule
employs spatio-temporal pruning techniques that reduce the num-
ber of visited microblogs to return the final answer. As thequery
module just retrieves what is there in the index, it has nothing to
do in controlling its result accuracy, which is mainly determined
by the decisions taken at theupdatemodule on what microblogs
to expire from the in-memory index. Details of thequerymodule
are described in Section 5.

3.2 Supported Queries

Venususers (or applications) issue queries on the form: “Retrieve
a set of recent microblogs near this location”. Internally, four pa-
rameters are added to this query: (1)k; the number of microblogs
to be returned, (2) a rangeR around the user location, where any
microblog located outsideR is considered too far to be relevant,
(3) a time spanT , where any microblog that is issued more than
T time units ago is considered too old to be relevant, and (4) a
spatio-temporal ranking functionFα that employs a parameterα
to combine the temporal recency and spatial proximity of each
microblog to the querying user. Then, the query answer consists
of k microblogs posted withinR andT , and top ranked according
to Fα. Formally, our query is defined as follows:
Definition: Givenk, R, T , andFα, a microblog spatio-temporal
search query from useru, located atu.loc, findsk microblogs
such that: (1) Thek microblogs are posted in the lastT time units,
(2) The (center) locations of thek microblogs are within rangeR
aroundu.loc, and (3) Thek microblogs are the top ranked ones
according to the ranking functionFα.

Our query definition is a natural extension to traditional spatial
range andk-nearest-neighbor queries, used extensively in spatial
and spatio-temporal databases [47], [48]. A range query finds all
items within certain spatial and temporal boundaries. Withthe
large number of microblogs that can make it to the result, it
becomes natural to limit the result size tok, and hence a ranking
function Fα is provided. Similarly, ak-nearest-neighbor query
finds theclosestk items to the user location. As the relevance

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

Intermediate

Cells

Leaf Cells

microblog
list

id time
1 13:23
2 13:37
3 14:12
4 15:43

Fig. 2. Main memory pyramid index structure in Venus.

of a microblog is determined by both its time and location, we
change the termclosestto be most relevant, hence we define a
ranking functionFα to score each microblog within our spatial
and temporal boundaries.

Upon initialization, a system administrator sets default values
for parametersk, R, T , and α. Users may still change the
values of the default parameters, yet a query may have worse
performance if the new parameters present larger search space
than the default ones. Setting default parameter values is adopted
by major services, like Bing and Twitter, which return the top-k
most related search results for a preset value ofk. However, user
can get more results upon request. Our system also can adapt for
dynamically changing the preset values in the middle of operations
as elaborated in Section 6.

3.3 Ranking Function

Given a useru, located atu.loc, a microblogM , issued at time
M.time and associated with locationM.loc, and a parameter0 ≤

α ≤ 1, Venusemploys the following ranking functionFα(u,M)
that combines generic spatial and temporal scores in a weighted
summation to give the relevance score ofM to u, where lower
scores are favored:

Fα(u,M) = α× SpatialScore(Ds(M.loc, u.loc))+
(1− α) ×TemporalScore(Dt(M.time,NOW))

Ds andDt are the spatial and temporal distances, respectively.
In Venus, we use Euclidean distance and absolute timestamps
difference, though, any othermonotonicdistance functions can
be used without changing the presented techniques. The largest
possible value takes place whenM is posted exactlyT time units
ago and on the boundary of regionR. α=1 indicates that the user
cares only about the spatial proximity of microblogs, i.e.,query
result includes thek closest microblogs issued in the lastT time
units. α=0 gives thek most recent microblogs within rangeR.
A compromise between the two extreme values gives a weight of
importance for the spatial proximity over the temporal recency.

TemporalScoreand SpatialScorecan be any functions that
are: (1) monotonic, (2) have an inverse function with respect
to the spatial and temporal distance, and (3) normalized in the
same range of values where smaller values indicate more relevant
microblogs. The inverse function is used in pruning search space
and optimizing memory footprint as we discuss in the following
sections. The normalization within the same range is not a cor-
rectness condition. However, as the scoring functions determine
the decay pattern of the microblog relevance over time and space,

normalization ensures that both spatial and temporal dimensions
have the same effect on the final relevance score. In this paper,
we employ the most two recognized scoring functions in the
literature: the linear function (see [6]) and the exponential function
(see [11]) to show the adaptivity of differentVenuscomponents
with the different functions. However, other scoring functions,
that satisfy the above conditions, can be adapted using exactly the
same procedure that are explained in each component throughout
the paper. The scores are defined by the following equations:

The linear scoring functions

TemporalScore(Dt(M.time,NOW)) =
{

Dt(M.time,NOW)
T

Dt(M.time,NOW) ≤ T
N/A Dt(M.time,NOW) > T

SpatialScore(Ds(M.loc, u.loc)) =
{

Ds(M.loc,u.loc)
R

Ds(M.loc, u.loc) ≤ R
N/A Ds(M.loc, u.loc) > R

Both functions are bounded in the range[0, 1].

The exponential scoring functions

TemporalScore(Dt(M.time,NOW)) =
{

ew×
Dt(M.time,NOW)

T Dt(M.time,NOW) ≤ T,w > 0
N/A Dt(M.time,NOW) > T

SpatialScore(Ds(M.loc, u.loc)) =
{

ew×
Ds(M.loc,u.loc)

R Ds(M.loc, u.loc) ≤ R,w > 0
N/A Ds(M.loc, u.loc) > R

Both functions must have the same value ofw to be bounded in
the same range[1, ew].

4 SPATIO-TEMPORAL INDEXING

We have two main objectives to satisfy inVenusindexing. First,
the employed index has to digest high arrival rates of incoming
microblogs. Second, the employed index should expel (delete)
microblogs from its contents with similar rates as the arrival rate.
This will ensure that the index size is fixed in a steady state,
and hence all available memory is fully utilized. The need to
support high arrival rates immediately favors space-partitioning
index structures (e.g., quad-tree [49] and pyramid [5]) over data-
partitioning index structures (e.g., R-tree). This is because the
shape of data-partitioning index structures is highly affected by the
rate and order of incoming data, which may trigger a large number
of cell splitting and merging with a sub performance compared to
space-partitioning index structures that are more resilient to the
rate and order of insertions and deletions.

To this end,Venusemploys a partial pyramid structure [5]
(Figure 2) that consists ofL levels. For a given levell, the whole
space is partitioned into4l equal area grid cells. At the root, one
grid cell represents the entire geographic area, level 1 partitions the
space into four equi-area cells, and so forth. Dark cells in Figure 2
present leaf cells, which could lie in any pyramid level, light gray
cells indicate non-leaf cells that are already decomposed into four
children, while white cells are not actually maintained, and just
presented for illustration. The main reason to use a pyramiddata
structure is to handle the skewed spatial distribution of microblogs

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

efficiently, so that dense areas are split into deeper levelswhile
sparse areas span only few levels. To elaborate, in a pyramid
index, a large leaf cell represents large space, when the density
is low. When the density is high, the depth increases so that a
cell covers a much smaller area. If we use a simple spatial grid,
for example, it is not clear what should be the grid size, and it
will never be right, too small for some regions and too large for
others. Each maintained pyramid cellC has a list of microblog
M List that have arrived within the cell boundary in the lastT
time units, ordered by their timestamps. A microblog with location
coordinates is stored in the leaf cell containing its location, while
a microblog with MBR is stored in the lowest level enclosing cell,
which could be non-leaf. The pyramid index is spatio-temporal,
where the whole space isspatially indexed (partitioned) into cells,
and within each cell, microblogs aretemporallyindexed (sorted)
based on timestamp.

Though it is most suitable toVenus, existing pyramid index
structures [5] are not equipped to accommodate the needs for
high-arrival insertion/deletion rates of microblogs. To support
high-rate insertions, we furnish the pyramid structure by abulk
insertion module that efficiently digests incoming microblogs
with their high arrival rates (Section 4.1) and aspeculative cell
splitting module that avoids skewed cell splitting (Section 4.2). To
support high-rate deletions, we provide abulk deletionmodule that
efficiently expels from the pyramid structure a set of microblogs
that will not contribute to any query answer (Section 4.3) and a
lazy cell mergingmodule that decides on when to merge a set of
cells together to minimize the system overhead (Section 4.4).

4.1 Bulk Insertion

Inserting a microblogM (with a point location) in the pyramid
structure can be done traditionally [5] by traversing the pyramid
from the root to find the leaf cell that includesM location. If
M has an MBR location instead of a point location, we do
the same except that we may end up insertingM in a non-leaf
node. Unfortunately, such insertion procedure is not applicable to
microblogs due to its high arrival rates. While inserting a single
item, new arriving items may get lost as the rate of arrival would
be higher than the time to insert a single microblog. This makes
it almost infeasible to insert incoming microblogs, as theyarrive,
one by one. To overcome this issue, we employ abulk insertion
module as described below.

The main idea is to buffer incoming microblogs in a mem-
ory bufferB, while maintaining a minimum bounding rectangle
BMBR that encloses the locations of all microblogs inB. Then,
the bulk insertion module is triggered everyt time units to insert
all microblogs of B in the pyramid index. This is done by
traversing the pyramid structure from the root to the lowestcell C
that enclosesBMBR. If C is a leaf node, we append the contents
of B to the top of the list of microblogs inC (C.M List).
This still ensures thatM List is sorted by timestamp as the
oldest microblog inB is more recent than the most recent entry
in M List. On the other hand, ifC is a non-leaf node, we:
(a) extract fromB those microblogs that are presented by MBRs
and cannot be enclosed by any ofC ’s children, (b) append the
extracted MBRs to the list of microblogs inC (C.M List),
(c) distribute the rest of microblogs inB, based on their locations,
to four quadrant buffers that correspond toC ’s children, and
(d) execute bulk insertion recursively for each child cell of C
using its corresponding buffer.

The parametert is a tuning parameter that trades-off insertion
overhead with the time that an incoming microblog becomes
searchable. A microblog is searchable (i.e., can appear in asearch
result), only if it is inserted in the pyramid structure. So,the larger
the value oft the more efficient is the insertion, yet, an incoming
microblog may be held in the buffer for a while before being
searchable. A typical value oft is a couple of seconds, which
is enough to have few thousands microblogs insideB. Since
the average arrival rate in Twitter is 5.5K+ microblogs/second,
settingt = 2 means that each two seconds, we will insert 11,000
microblogs in the pyramid structure, instead of inserting them one
by one as they arrive. Yet, a microblog may stay for up to two
seconds after its arrival to be searchable, which is a reasonable
time.

Bulk insertion significantly reduces insertion time as instead
of traversing the pyramid for each single microblog, we group
thousands of microblogs into MBRs and use them as our traversing
unit. Also, instead of inserting each single microblog in its
destination cell, we insert a batch of microblogs by attaching a
buffer list to the head of the microblog list.

4.2 Speculative Cell Splitting

Each pyramid index cell has a maximum capacity; set as an index
parameter. If a leaf cellC has exceeded its capacity, a traditional
cell splitting module would splitC into four equi-area quadrants
and distributeC contents to the new quadrants according to their
locations. Unfortunately, such traditional splitting procedure may
not be suitable to microblogs. The main reason is that microblog
locations are highly skewed, where several microblogs may have
the same exact location, e.g., microblogs tagged with a hot-
spot location like a stadium. Hence, when a cell splits, all its
contents may end up going to the same quadrant and another
split is triggered. The split may continue forever unless with a
limit on the maximum pyramid height, allowing cells with higher
capacity at the lowest level. This gives a very poor insertion and
retrieval performance due to highly skewed pyramid branches with
overloaded cells at the lowest level.

To avoid long skewed tree branches, we employ aspeculative
cell splitting module, where a cellC is split into four quadrants
only if two conditions are satisfied: (1)C exceeds its maximum
capacity, and (2) if split, microblogs inC will span at least two
quadrants. While it is easy to check the first condition, checking
the second condition is more expensive. To this end, we maintain
in each cell a set of split bits (SplitBits) as a four-bits variable; one
bit per cell quarter (initialized to zero). We use theSplitBitsas a
proxy for non-expensive checking on the second condition.

After each bulk insertion operation in a cellC, we first check
if C is over capacity. If this is the case, we check for the second
condition, where there could be only two cases forSplitBits:
(1) Case 1: The fourSplitBitsare zeros. In this case, we know that
C has just exceeded its capacity during this insertion operation.
So, for each microblog inC, we check which quadrant it belongs
to, and set its corresponding bit inSplitBits to one. Once we set
two different bits, we stop scanning the microblogs and split the
cell as we now know that the cell contents will span more than
one quadrant. If we end up scanning all microblogs inC with
only one set bit, we decide not to splitC as we are sure that a split
will end up having all entries in one quadrant. (2) Case 2: One
of the SplitBits is one. In this case, we know thatC was already
over capacity before this insertion operation, yet,C was not split
as all its microblogs belong to the same quadrant (the one hasits

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

bit set inSplitBits). So, we only need to scan the new microblogs
that will be inserted inC and set their correspondingSplitBits.
Then, as in Case 1, we splitC only if two different bits are set.
In both cases, when splittingC, we reset itsSplitBits, create four
new cells with zeroSplitBits, and distribute microblogs inC to
their corresponding quadrants. This shows that we would never
face a case where two (or more) of theSplitBitsare zeros, as once
two bits are set, we immediately split the cell, and reset allbits.

Using SplitBitssignificantly reduces insertion and query pro-
cessing time as: (a) we avoid dangling skewed tree branches,and
(b) we avoid frequent expensive checking for whether cell contents
belong to the same quadrant or not, as the check is now done
infrequently on a set of bits. In the meantime, maintaining the
integrity of SplitBitscomes with very little overhead. First, when
cell is under capacity, we do not read or set the value ofSplitBits.
Second, deleting entries from the cell has no effect on itsSplitBits,
unless it becomes empty, where we reset all bits.

4.3 Bulk Deletion

As we have finite memory,Venusneeds to delete older microblogs
to give room for newly incoming ones. Deleting an itemM from
the pyramid structure can be done in a traditional way [5] by
traversing the pyramid from its root till cellC that encloses
M , and then removingM from C ’s list. Unfortunately, such
traditional deletion procedure cannot scale up forVenusneeds.
Since we need to keep index contents to only objects from the last
T time units, we may need to keep pointers to all microblogs, and
chase them one by one as they become out of the temporal window
T , which is a prohibitively expensive operation. To overcomethis
issue, we employ abulk deletionmodule where all deletions are
done in bulk. We exploit two strategies for bulk deletion, namely,
piggybackingandperiodicbulk deletions, described below.
Piggybacking Bulk Deletion. The idea is to piggyback the
deletion operation on insertion. Once a microblog is inserted in
a cellC, we check ifC has any items older thanT time units in
its microblog list (M List). AsM List is ordered by timestamp,
we use binary search to find its most recent itemM that is older
thanT . If M exists, we trimM List by removing everything
from it starting fromM . Piggybacking deletion on insertion saves
significant time as we share the pyramid traversal and cell access
with the insertion operation.
Periodic Bulk Deletion. With piggybacking bulk deletion, a cell
C may still have some useless microblogs that have not been
deleted, yet, due to lack of recent insertions inC. To avoid such
cases, we trigger a light-weight periodic bulk deletion process
everyT ′ time units (we useT ′ = 0.5T). In this process, we go
through each cellC, and only check for the first (i.e., most recent)
item M ∈ C.M List. If M has arrived more thanT time units
ago, we wipeC.M List. If M has arrived within the lastT time
units, we do nothing and skipC. It may be the case thatC still has
some expired items, yet we intentionally overlook them in order to
make the deletion light-weight. Such items will be deleted either
in the next insertion or in the next periodic cleanup.

Deleted microblogs are moved from our in-memory index
structure to another index structure, stored in a lower storage tier.
Deleted microblogs will be retrieved only if an issued queryhas
a time boundary larger thanT , which is an uncommon case, as
most of our incoming queries use the defaultT value.

4.4 Lazy Cell Merging

After deletion, if the total size ofC and its siblings is less than the
maximum cell capacity, a traditional cell merging algorithm would

mergeC with its siblings into one cell. However, with the high
arrival rates of microblogs, we may end up in spending most ofthe
insertion and deletion overhead in splitting and merging pyramid
cells, as the children of a newly split cell may soon merge again
after deleting few items. To avoid such overhead, we employ a
lazy mergingstrategy, where we merge four sibling cells into their
parent only if three out of the four quadrant siblings are empty.

The idea is that once a cellC becomes empty, we check its
siblings. If two of them are also empty, we move the contents of
the third sibling to its parent, mark the parent as a leaf node, and
removeC and its siblings from the pyramid index. This is lazy
merging, where in many cases it may happen that four siblings
include few items that can all fit into their parent. However,we
avoid merging in this case to provide more stability for our highly
dynamic index. Hence, once a cellC is created, it is guaranteed
to survive for at leastT time units before it can be merged again.
This is becauseC will not be empty, i.e., eligible for merging,
unless there are no insertions inC within T time units. Although
the lazy merging causes underutilized cells, this has a slight effect
on storage and query processing, compared to saving redundant
split/merge operations (which is measured practically to be 90%
of the whole split/merge operations) that leads to a significant
reduction in index update overhead.

5 QUERY PROCESSING

This section discusses the query processing module, which re-
ceives a query from useru with spatial and temporal boundaries,
R andT , and returns the top-k microblogs according to a spatio-
temporal ranking functionFα that weights the importance of
spatial proximity and time recency of each microblog tou. A
simple approach is to exploit the pyramid index structure to
compute the ranking score for all microblogs withinR and T
and return only the top-k ones. Unfortunately, such approach is
prohibitively expensive due to the large number of microblogs
within R andT . Instead,Venususes the ranking function to prune
the search space and minimize the number of visited microblogs
through a two-phase query processor. Theinitialization phase
(Section 5.2) finds an initial set ofk microblogs that form a basis
of the final answer. Thepruning phase (Section 5.3) keeps on
tightening the initial boundariesR andT to enhance the initial
result and reach to the final answer.

5.1 Query Data Structure

The query processor employs two main data structures; a priority
queue of cells and a sorted list of microblogs:
Priority queue of cellsH : A priority queue of all index cells that
overlap with query spatial boundaryR. An entry in H has the
form (C, index, BestScore); whereC is a pointer to the cell,index
is the position of the first non-visited microblog inC (initialized
to one), andBestScoreis the best (i.e., lowest) possible score, with
respect to useru, that any non-visited microblog inC may have.
Cells are inserted inH ordered byBestScore, computed as:

BestScore(u,C) = α× SpatialScore(Ds(u.loc, C))
+(1− α)× TemporalScore(C.M List[index].time,NOW)

WhereDs(u.loc, C) is the minimum distance betweenu andC
andC.M List[index] is the most recent non-visited microblog
in C.
Sorted list of microblogs AnswerSet: A sorted list of k mi-
croblogs of the form (MID, Score), as the microblog id and score,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

sorted on score. Upon completion of query processing,AnswerSet
contains the final answer.

5.2 The Initialization Phase

The initialization phase gets an initial set ofk microblogs that
form the basis of pruning in the next phase. One approach is to
get the most recentk microblogs from the pyramid cellC that
includes the user location. Yet, this is inefficient as: (1)C may
contain less thank microblogs withinT , and (2) other microblogs
outsideC may provide tighter bounds for the initialk items, which
leads to faster pruning later.
Main Idea. The main idea is to consider all cells within the spatial
boundaryR in constructing the initial set ofk microblogs. We
initialize the heapH by one entry for each cellC within R.
Entries are ordered based on best scores computed as discussed
in Section 5.1. Then, we take the top entry’s cellC in H as
our strongest candidate to contribute to the initial top-k list. We
removeC from H and check on its microblogs one by one in
their temporal order. For each microblogM , we compare its score
against the best score of the current top cellC ′ in H . If M has
a smaller (better) score, we insertM in our initial top-k list, and
check on the next microblog inC. Otherwise, (a) we conclude that
the next entry’s cellC ′ in H has a stronger chance to contribute
to top-k, so we repeat the same procedure forC ′, and (b) ifM is
still within the temporal boundaryT , we insert a new entry ofC
intoH with a new best score. We continue doing so till we collect
k items in the top-k list.
Algorithm. Algorithm 1 starts by populating the heapH with an
entry for each cellC that overlaps with the query boundaryR.
Each entry has its cell pointer, the index of the first non-visited
microblog as one, and the best score that any entry inC can have
(Lines 2 to 6). Then, we remove the top entryTopH fromH , and
keep on retrieving microblogs from the cellTopH.C and insert
them into our initial answer set till any of these three stopping
conditions take place: (1) We collectk items, where we conclude
the initialization phase at Line 16, (2) The next microblog inC
is either outsideT or does not exist, where we setM to NULL
(Line 25) and retrieve a new top entryTopH from H (Line 28),
or (3) The next microblogM in C is within T , yet it has a higher
score than the current top entry inH . So, we insert a new entry of
C with a new score and current index ofM in H , and retrieve a
new top entryTopH from H (Lines 27 to 28). The conditions at
Lines 8 and 14 are always true in this phase asMIN is set to∞.

5.3 The Pruning Phase

The pruning phase takes theAnswerSetfrom the initialization
phase and enhances its contents to reach the finalk.
Main Idea. The pruning phase keeps on tightening the original
search boundariesR and T to new boundaries,R′ ≤ R and
T ′ ≤ T , till all microblogs within the tightened boundaries are
exhausted. Microblogs outside the tightened boundaries are early
pruned without looking at their scores. The idea is to maintain a
thresholdMIN as the minimum acceptable score for a microblog
to be included inAnswerSet, which corresponds to the currentkth
score inAnswerSet. Assume the linear scoring functions (as in
Section 3.3), for a microblogM to be included inAnswerSet, M
has to have a lower score thanMIN, i.e.,:

α
Ds(u.loc,M.loc)

R
+ (1− α)

NOW −M.time

T
< MIN

Algorithm 1 Query Processor
1: Function Query Processor (u, k, T , R, α)
2: H ← φ; AnswerSet← φ; MIN ←∞; R′ ← R; T ′ ← T
3: for each leaf cellC overlaps withR do
4: BestScore← α SpatialScore(Ds(u.loc, C)) + (1-α)

TemporalScore(Dt(C.M List[1].time,NOW))
5: Insert (C, 1, BestScore) into H
6: end for
7: TopH ← Get (and remove) first entry inH
8: while TopH is not NULL andTopH.score < MIN do
9: Score← TopH.score; M ← TopH.C.M List[TopH.index]

10: NextScore← score of current top entry inH
11: while Score< NextScoreandM is not NULL do
12: if M.loc insideR′ then
13: Score← α SpatialScore(Ds(u.loc,M.loc)) + (1-α)

TemporalScore(Dt(M.time,NOW))
14: if Score< MIN then
15: Insert (M ,Score) in AnswerSet
16: if |AnswerSet| ≥ k then
17: Trim AnswerSet size tok
18: MIN ← AnswerSet[k].score;
19: R′ ← Min(R′, PruneRatios ×R′)
20: T ′ ← Min(T ′, PruneRatiot × T ′)
21: end if
22: end if
23: end if
24: M ← Next microblog inTopH.C.M List
25: if M.time outsideT ′ then M ← NULL
26: end while
27: if M 6= NULL then Insert (C, index(M), BestScore) in H
28: TopH ← Get (and remove) first entry inH
29: end while
30: Return AnswerSet

This formula is used for spatial and temporal boundary tight-
ening as follows: (1)Spatial boundary tightening.Assume that
M has the best possible temporal score, i.e.,M.time = NOW.
In order for M to make it to AnswerSet, we should have:
αDs(u.loc,M.loc)

R
< MIN , i.e., M has to be within distance

MIN
α

R from the user. We call the valueMIN
α

the spatial pruning
ratio, for shortPruneRatios. Hence, we tighten our spatial
boundary toR′ = Min(R,PruneRatios × R). (2) Temporal
boundary tightening.Assume thatM has the best possible spatial
score, i.e.,Ds(u.loc,M.loc) = 0. In order forM to make it to
AnswerSet, we should have:(1 − α) NOW−M.time

T
< MIN ,

i.e., M has to be issued within the lastMIN
1−α

T time units.
We call the valueMIN

1−α
the temporal pruning ratio, for short

PruneRatiot. Hence, we tighten our temporal boundary to
T ′ = Min(T, PruneRatiot × T). Following the same steps,
we can derive the valuesPruneRatios and PruneRatiot
for the exponential scoring functions to be:PruneRatios =
1
w
× ln(MIN−(1−α)

α
) andPruneRatiot =

1
w
× ln(MIN−α

1−α
).

Algorithm. Line 16 in Algorithm 1 is the entry point for the
pruningphase, where we already havek microblogs inAnswerSet.
We first setMIN to thekth score inAnswerSet. Then, we check
if we can apply spatial and/or temporal pruning based on the
values of MIN and α as described above. Pruning and bound
tightening are continuously applied with every time we find anew
microblogM with a lower score thanMIN, where we insertM
into AnswerSetand updateMIN (Lines 14 to 22). The algorithm
then continues exactly as in theinitialization phase by checking if
there are more entries in the current cell or we need to get another
entry from the heap. The algorithm concludes and returns thefinal
answer list if any of two conditions takes place (Line 8): (a)Heap

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

H is empty, which means that we have exhausted all microblogs
in the boundaries, or (b) The best score of top entry ofH is larger
thanMIN, which means all microblogs inH cannot make it to the
final answer.

6 INDEX SIZE TUNING

Our discussion so far assumed that all microblogs posted in the
lastT time units are stored in the in-memory pyramid structure.
Hence, a query with any temporal boundary≤ T guarantees to
find its answer entirely in memory. In this section, we introduce
the index size tuningmodule that takes advantage of the natural
skewness of data arrival rates over different pyramid cellsto
achieve its storage savings (∼50% less storage) without sacrificing
the answer quality (accuracy>99%). Our index size tuningis
motivated by two main observations: (1) The top-k microblogs
in areas with high microblog arrival rates can be obtained from
a much shorter time than areas of low arrival rates, e.g., top-k
microblogs in downtown Chicago may be obtained from the last
30 minutes, while it may need couple of hours to get them in a
suburb area. (2)α plays a major role on how far we need to go
back in time to look for microblogs. Ifα = 1, top-k microblogs
are the closest ones to the user locations, regardless of their time
arrival within T . If α = 0, top-k microblogs are the most recent
ones posted withinR, so, we look back only for the time needed to
issuek microblogs. Then, for each cellC, we find the minimum
search time horizonTc ≤ T such that an incoming query toC
finds its answer in memory. Assume the microblog arrival ratefor
a cellC is λc and we use the linear scoring functions. Then,Tc is
given by the following equation:

For linear scoring functions

Tc = Min

T,
α

1− α
T +

k

Min
(

Area(R)
Area(C) , 1

)

× λc

 (1)

The detailed derivation forTc value can be revised in either [6]
or Appendix A. Following the same steps, we can deriveTc using
the exponential scoring function to be given by:

For exponential scoring functions

Tc = Min

(

T,
T

w
ln[

α

1− α
(ew − 1) + e

wk

Min(Area(R)
Area(C)

,1)×λcT]

)

(2)
We discuss next the impact of theindex size tuningmodule

on variousVenuscomponents. Equations 1 and 2 means that in
order for a microblogM in cell C to make it to the top-k answer,
M has to arrive within the lastTc time units, whereTc ≤ T ,
and so any older microblog can be safely shed without affecting
the query accuracy. Therefore, we save memory space by storing
fewer microblogs. We next discuss the impact of employing the
Tc values onVenuscomponents.
Index Structure. Each pyramid cellC will keep track of two
additional variables: (1)λc; the arrival rate of microblogs inC,
which is continuously updated on arrival of new microblogs,
and (2) Tc; the temporal boundary in cellC computed from
Equations 1 or 2, and updated with every update ofλc.
Index Operations. Insertion in the pyramid index will have the
following two changes: (1) For all visited cells in the insertion
process, we update the values ofλc andTc, (2) If Tc is updated
with a new value, we will have one of two cases: (a) The value

of Tc is decreased. In this case, microblogs that were posted
in the time interval between the old and new values ofTc are
immediately deleted. (b) The value ofTc is increased. In this case,
we have a temporal gap between the new and old values ofTc,
where there are no microblogs there. However, with the rate of
updates ofTc, such gap will be filled up soon, and hence would
have very little impact on query answer. On the other side, deletion
module deletes microblogs from each cellC based on the value
of Tc rather than based on one global valueT for all cells.
Index Maintenance.When a cellC splits into four quadrant cells,
the value ofλc in each new child cellCi is set based on the ratio
of microblogs from cellC that goes to cellCi. As Venusemploys
a lazy merging policy, i.e., four cells are merged into a parent cell
C only if three of them are empty, the value ofλc at the parent
cell C is set to the arrival rate of its only non-empty child.
Query Processor.The query processor module is left intact as
it retrieves its answer from the in-memory data regardless of the
temporal domain of the contents.

It also worth mentioning that optimizing the index for preset
default parameters values does not limitVenus from adapting
changes to these values in the middle of operations. In case a
system administrator change the default values in the middle of
operations, the index contents will be adapted for the new values
in the following data insertion cycles (based on the new computed
values ofTc). So, all what is needed is to plan changing the values
ahead if the new queries require more data to fulfill their answers,
i.e., if they lead into increasingTc values.

7 LOAD SHEDDING

Even with the index size tuningmodule, there could be cases
where there is no enough memory to hold all microblogs from
the lastTc time units in each cell, e.g., very scarce memory or
time intervals with very high arrival rates. Also, some applications
are willing to trade slight decrease in query accuracy with alarge
saving in memory consumption. In such cases,Venustriggers a
load sheddingmodule that smartly selects and expires a set of
microblogs from memory such that the effect on query accuracy
is minimal. The main idea of theload sheddingmodule is to
use less conservative analysis than that of theindex size tuning
module that. In particular, Equations 1 and 2 consider the very
conservative case thateverystored microblogM may have a query
that comes exactly atM.loc, i.e.,Ds(M.loc, u.loc) = 0. Theload
sheddingmodule relaxes this assumption and assumes that queries
are postedβR miles away fromM , i.e.,Ds(M.loc, u.loc) = βR,
where0 ≤ β ≤ 1. Using this relaxed assumption, we can revise
the value of time horizon per cell to be:

For linear scoring functions

Tc,β = Min

T,
α(1− β)

1− α
T +

k

Min
(

Area(R)
Area(C) , 1

)

× λc

(3)For exponential scoring functions

Tc,β = Min

(

T,
T

w
ln[

α

1− α
(ew − ewβ) + e

wk

Min(Area(R)
Area(C)

,1)λcT]

)

(4)
We use the termTc,β instead ofTc to indicate the search time
horizon for each cellC when the load sheddingmodule is
employed. The detailed derivation ofTc,β can be revised either
in [6] or Appendix B.1. Per Equations 3 and 4 ,Tc,β gives a

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

tighter temporal coverage for each cell asTc,β ≤ Tc. β acts as
a tuning parameter that trades-off significant savings of storage
with slight loss of accuracy. As Appendix B.2 shows, a storage
saving ofβ results in accuracy loss maximum ofβ3. For example,
if β = 0.3, a 30% saving of storage is traded with maximum
of 2.7% of accuracy loss. However, the experimental evaluation
shows even much better performance.

8 ADAPTIVE LOAD SHEDDING

As we show in Section 7, load shedding inVenususes a global
parameterβ that represents the minimum spatial distance, as a
ratio fromR, between queries locations and microblogs locations.
Choosing the right value forβ is challenging as it should change
across space and time: Microblogs queries change dynamically
over time [24] and a single value limits the cost-benefit trade-
off of load shedding. More importantly, the spatial distribution of
both microblogs data and queries changes substantially across re-
gions [6], and therefore using a global parameter may poorlytreat
sparse regions for which few queries are issued and aggressively
treat dense regions where most queries are issued.

In this section, we introduce two methods,β-load shedding
andγ-load shedding, which tune the load shedding process. Both
methods extend theβ-parameterized load shedding module in
three aspects: (a) they tune the load shedding automatically so
that it is not needed to preset a fixed value forβ by the system
administrator, (b) they keep one load shedding parameter value
per each spatial index cell, instead of using one global value for
all regions, to adapt with the localized distributions of incoming
data and queries , and (c) they update the load shedding parameter
values dynamically over time to reflect the changes in both data
and queries. In the rest of this section, we develop the two methods
and discuss their impact on the system components.

8.1 β-Load Shedding

In β-Load Shedding (β-LS for short), each index cell stores a
parameterβ to use in determining its temporal horizonTc,β

(Equations 3 and 4).β has exactly the same meaning as described
in Section 7, however, it is distinct per index cell instead of
being a global parameter for the whole index. In addition,β-
LS automatically tunesβ values based on the incoming query
loads. Then, each cellC uses its own auto-tunedβ value to keep
only microblogs from the lastTc,β time units and shed older
microblogs. In the rest of the section we describe the automatic
tuning ofβ along withβ-LS impact onVenuscomponents.

Main idea. The main idea is to distinguish the spatial regions
based on the percentage of queries they receive. Regions that
receive a big percentage of the incoming queries are considered
important spatial regions and so a small portion of data is shed,
i.e., smallβ value is assigned, to reduce the likelihood to miss
answer microblogs for a lot of queries. On the contrary, cells that
receive small percentage of queries are considered less important,
so that shedding more data will not significantly affect the query
accuracy, and so a largeβ value is assigned. Thus, we use only
the spatial distribution of incoming queries to estimate theβ value,
per cell, that is bounded in the range[0, 1].

Implementation. For each index cellC, we keep the per-
centage of queries that processC microblogs out of all queries
that are posted to the index. Specifically, for the whole index, we
keep a single long integerQtotal that counts the total number of
posted queries to the index so far. In addition, for each cellC,
we maintain an integerC.Qc that counts the number of queries

that processone or moremicroblog(s) fromC.M List. Then,
wheneverC.Tc,β value is updated, on insertions inC, the value of
β is estimated byβ = 1− C.Qc

Qtotal
. Consequently, cells that did not

receive any queries, i.e.,C.Qc = 0, are assignedβ value of1 and
then a large amount of data is shed. On the other hand, cells that
receive a big percentage of queries are assigned a smallβ value
and hence shed much less data. BothQtotal andC.Qc are reset
every T time units, measured from the system start timestamp,
so thatβ values are estimated only based on the recent queries
to adapt with the dynamic changes in query loads over time. By
definition,0 ≤ C.Qc ≤ Qtotal, for allC, thenβ value is bounded
in the range[0, 1].

Impact on Venus components. β-LS implementation impacts
index contents and query processing. For the index, each cell C
maintains an additional integerC.Qc, which ends up with a little
impact on the overall index storage (less than 0.5MB extra which
does not exceed1−4% of the overall storage) compared to the big
storage saving that comes from shedding more microblogs. During
the query processing,Qtotal is maintained for the whole index and
C.Qc is maintained for each cell. Although being concurrently
accessed from multiple query threads, the concurrent operation on
both of them is only a single atomic increment which causes a little
overhead in query latency as our experiments show in Section9.

8.2 γ-Load Shedding

In γ-Load Shedding method (γ-LS for short), we go one step
beyond using only the query spatial distribution (as inβ-LS) and
use the access pattern of microblogs data inside the cell.β-LS
increases the importance measure of a cellC as long asone
or more of its microblogs is processed by the query regardless
of the actual number of processed microblogs fromC.M List.
On the contrary,γ-LS considers which microblogs are actually
processed from the cell so that each cell stores only the useful
data. To illustrate, we recall one ofMercury [6] findings that
the analytical values ofTc and Tc,β do not comply with the
theoretical expectations. Specifically,Tc achieves< 100% query
accuracy while it is expected to provide accurate results while Tc,β

achieves query accuracy much higher than the theoretical bound
((1 − β3) × 100)%. This means that each cellC stores either
less or more data than it is needed. Motivated by this finding,γ-
LS aims to adjust cell storage so that only microblogs that are
sufficient to answer all incoming queries accurately are stored.

Main idea. The main idea is to estimate for each cellC the
minimum search time horizonTc,γ ≤ T such thatC keeps only
the useful data to answer incoming queries from main-memory
contents. UnlikeTc, that is calculated analytically based only
on the default query parameters as discussed in Section 6,Tc,γ

is calculated adaptively with the incoming query load. AsTc

andTc,β are shown to be close to the optimal time horizon, to
calculateTc,γ , we make use ofTc andTc,β equations. Particularly,
we replace the parameterβ in Tc,β (Equation 3) with another
parameterγ. Unlike β, γ can take any value rather than being
bounded in the range[0, 1]. Thus,γ is a tuning parameter where
its values have three possible cases: (1)γ ∈ [0, 1]: in this caseγ
has the same effect asβ (see Section 7) and controls the amount
of shed data through controlling the value ofTc,γ ≤ Tc ≤ T .
(2) γ > 1: in this case, the valueTc,β at β = 1 is too large for
the incoming queries to this cell, then the term(1− γ) gives a
negative value and decreases the cell temporal coverage to shed
the useless data that increases the storage overhead while does
not contribute to the query answers. (3)γ < 0: in this case,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

the valueTc,β at β = 0, i.e. Tc, is too small to answer all the
incoming queries to this cell, then the term(1− γ) gives a value
larger than1 and increases the cell temporal coverage to answer
all the incoming queries accurately. Although Case 3 would lead
to a slight increase in the storage overhead for some parameter
setup, e.g., atα ≈ 0, it would consequently fill the gap between
the theoretical assumptions ofTc value and the practical data
distribution which lead to loss in query accuracy, as shown in
Mercury [6] experiments.

Implementation. To implementγ-LS, Venusmaintains aγ
value in each index cell, that is changing adaptively with the
incoming queries. To this end,γ value is calculated as follows.
For an incoming query, we measure the time horizonTc,γ that
spans all the processed microblogs, i.e., the useful data, in C.
Obviously, Tc,γ equals the difference betweenNOW and the
oldest processed microblog. Based on the measured value ofTc,γ ,
we calculate a valueγ using the following equations:

For linear scoring functions

γ = 1−

Tc,γ −
k

Min
(

Area(R)
Area(C) , 1

)

× λc

1− α

αT
(5)

For exponential scoring functions

γ =
1

w
ln

(

ew +
1− α

α

(

e

wk

Min(Area(R)
Area(C)

,1)λcT
− e

wTc,γ
T

))

(6)
Equations 5 and 6 are derived from Equations 3 and 4 by replacing
β with γ and separatingγ in the left hand side. If theln parameter
has a negative value, the negative sign is omitted and multiplied
by the final result. Using a series ofγ values, from subsequent
queries, one estimated value ofγ is calculated for each cellC.
Then, the estimatedγ value is used in Equations 3 and 4, replacing
β, to calculate the actual cell temporal coverageTc,γ .

To estimateγ value per cell, we use a sample of the incoming
queries to the cell. This sample is chosen randomly and inde-
pendently per cell. For each query in the sample, aγ value is
calculated, during the query processing, as described above. Then,
the estimatedγ is calculated by one of two methods:min or
averagewhere the minimum or the average value, respectively,
so far is used. In both cases,γ value is reset everyT time
units, measured from the system start timestamp, so that it is
estimated only based on the recent queries to adapt with the
dynamic changes in query loads over time. The query sample is
chosen randomly per cell for two reasons: (a) Asγ is calculated
during the query processing, then using all the incoming queries
may be overwhelming to the query latency with a heavy query
load in real time, so only a sample of queries are being used to
reduce this overhead. (b) The query sample is chosen randomly
and independently for each cell to eliminate any bias for a certain
subset of the queries. As calculatingγ value in each cell is
independent from all other cells contents, choosing a different
query sample for each cell is valid and leads to highly reliable
load shedding as almost all incoming queries have a chance to
contribute to tuning the load shedding in some cells.

Impact on Venus components. γ-LS implementation mainly
impacts the query processing and slightly impacts index contents.
For each index cellC, a single estimated valueC.γ is maintained
incrementally. In addition, an additional integer is maintained per
cell in caseC.γ is estimated using the incremental average. Both

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.2 0.4 0.6 0.8 1

S
to

ra
g

e
 O

v
e

rh
e

a
d

 (
%

)

α

MT
MST
MLS

VLS-β
VLS-γ

(a) Storage Overhead

 93

 94

 95

 96

 97

 98

 99

 100

 0 0.2 0.4 0.6 0.8 1

Q
u

e
ry

 A
c
c
u

ra
c
y
 (

%
)

α

MT
MST
MLS

VLS-β
VLS-γ

(b) Query Accuracy

Fig. 3. Effect of α on storage vs. accuracy

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 3 6 9 12

S
to

ra
g

e
 O

v
e

rh
e

a
d

 (
%

)

T (hr)

MT
MST
MLS

VLS-β
VLS-γ

(a) Storage Overhead

 95

 96

 97

 98

 99

 100

 3 6 9 12

Q
u

e
ry

 A
c
c
u

ra
c
y
 (

%
)

T (hr)

MT
MST
MLS

VLS-β
VLS-γ

(b) Query Accuracy

Fig. 4. Effect of T on storage vs. accuracy

end up with maximum of 1MB extra storage on the average which
is much less than storage saving of the shed microblogs and
presents a negligible percentage of1−4% out of the overall storage
consumption.C.γ is incrementally maintained when incoming
queries access some microblogs fromC.M List. For each query,
a newγ value is calculated as described above and its estimated
valueC.γ is updated accordingly. AlthoughC.γ is concurrently
accessed from multiple query threads, only a single concurrent
operation is needed to set the new value which is a little overhead
compared to the expensive computation ofγ values. Section 9
shows the query latency overhead ofγ-LS compared to its storage
saving and accuracy enhancement.

In bothβ-LS andγ-LS, the search time horizon is calculated
based on Equations 3 and 4. To prevent the cancellation of the
major term whenα = 0, which totally discards the automatic
tuning of the adaptive load shedding module, we replaceα in
the numerator of these equations by(α+ ǫ) so that the values of
β and γ work for adjusting the amount of load shedding. We
set ǫ = 0.0001. In Section 9, our experiments show that this
heuristic increases the query accuracy, atα = 0, from ≈ 95%,
as inMercury [6], to over99% in Venus.

9 EXPERIMENTAL EVALUATION

This section provides experimental evaluation ofVenusbased on
an actual system implementation. As a successor ofMercury [6],
and with lack of other direct competitors (see Section 2),Venus
evaluation shows the effectiveness of its new components com-
pared toMercury components. This includes: (1) The adaptive
load shedding module, with its two variationsβ-LS andγ-LS, as
described in Section 8. (2) The flexible top-k ranking that employs
both linear and exponential ranking functions. The experimental
study in this section evaluates the effect of the different ranking
functions on both effectiveness of spatio-temporal pruning in
query processing and index storage overhead and its effect on
query accuracy.

All experiments are based on a real prototype ofVenusand
using a real-time feed of US tweets (via access to Twitter Firehose
archive) and actual locations of web search queries from Bing.
We have stored real 340+ million tweets and one million Bing
search queries in files. Then, we have read and timestamped

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

Linear Scoring Exponential Scoring

Spatial Score Ds(M.loc,u.loc)
R

ew×
Ds(M.loc,u.loc)

R

Temporal Score Dt(M.time,NOW)
T

ew×
Dt(M.time,NOW)

T

Spatial Pruning Boundary Min
(

R, MIN
α

R
)

Min
(

R, 1
w

× ln(
MIN−(1−α)

α
)R
)

Temporal Pruning Boundary Min
(

T, MIN
1−α

T
)

Min
(

T, 1
w

× ln(MIN−α
1−α

)T
)

Index Size Tuning Time (Tc) Min

(

T, α
1−α

T + k

Min
(

Area(R)
Area(C)

,1
)

×λc

)

Min

T, T
w
ln[α

1−α
(ew − 1) + e

wk

Min

(

Area(R)
Area(C)

,1
)

×λcT]

Load Shedding Time (Tc,β) Min

(

T,
α(1−β)
1−α

T + k

Min
(

Area(R)
Area(C)

,1
)

×λc

)

Min

T, T
w
ln[α

1−α
(ew − ewβ) + e

wk

Min

(

Area(R)
Area(C)

,1
)

λcT]

Adaptiveγ-Load Shedding (γ) 1−

(

Tc,γ − k

Min
(

Area(R)
Area(C)

,1
)

×λc

)

1−α
αT

1
w
ln

ew + 1−α
α

e

wk

Min

(

Area(R)
Area(C)

,1
)

λcT
− e

wTc,γ
T

TABLE 1
Summary of different system components equations using linear and exponential scoring.

 1

 2

 3

 4

 10 50 100

Q
u
e
ry

 L
a
te

n
c
y
 (

m
s
)

k

MST
MLS

VLS-β
VLS-γ

(a) k vs. Query Latency

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0.25 1 4 16 64 256

Q
u

e
ry

 L
a

te
n

c
y
 (

m
s
)

R (miles)

MST
MLS

VLS-β
VLS-γ

(b) R vs. Query Latency

Fig. 5. Effect of adaptive load shedding on query latency

them to simulate an incoming stream of real microblogs and
queries. Unless mentioned otherwise, the default value ofk is
100, microblog arrival rateλ is 1000 microblogs/second, rangeR
is 30 miles,T is 6 hours,α is 0.2,β is 0.3,w is 1, cell capacity
is 150 microblogs, the spatial and temporal scoring functions are
linear, andγ-LS usesmin estimation. The default values of cell
capacity,α, andβ are selected experimentally and show to work
best for query performance and result significance, respectively,
while defaultλ is the effective rate of US geotagged tweets. As
microblogs are so timely that Twitter gives only the most recent
tweets (i.e.,α=0), we setα to 0.2 as the temporal dimension is
more important than spatial dimension. All results are collected
in the steady state, i.e., after running the system for at least T
time units. We use an Intel Core i7 machine with CPU 3.40GHZ
and 64GB RAM. Our measures of performance include insertion
time, storage overhead, query accuracy, and query latency.Query
accuracy is calculated as the percentage of correct microblogs in
the obtained answer compared to the true answer. True answer
is calculated when all microblogs of the lastT time units are
stored in the index. The rest of this section recapsMercury
results [6] (Section 9.1) and evaluates the adaptive load shedding
(Section 9.2) and top-k ranking (Section 9.3).

9.1 Mercury Results Recap

In this section, we recapMercury [6] results, the predecessor of
Venus, as a context for evaluating the new components inVenus.
Mercury has evaluated three alternatives of its index: (a) storing
all microblogs of lastT time units (denoted asMT), (b) using
the index size tuningmodule (Section 6), denoted asMST, and
(c) usingMercury load sheddingmodule (Section 7), denoted as
MLS.

Index Scalability: Mercury shows thatMT digests 32K mi-
croblog/sec whileMST and MLS digest 64K in∼ 0.5 sec. This
shows an efficient digestion for arrival rates an order of magnitude
higher than Twitter rate. Also, it shows more digestion scalability
for indexes that store less data.

Memory Optimization : Mercuryshows thatMSTcan achieve
storage savings of 90-25% forα < 0.5. This corresponds to query
accuracy of 95-99+%, where the lowest accuracy, i.e, 95%, is
achieved atα = 0 due to the cancellation of the major term inTc

and so the index barely stores onlyk microblogs in each regionR.
AlthoughMST is theoretically expected to achieve 100% accuracy
consistently, the small accuracy loss comes from the gap between
the theoretical assumption of uniformly distributed microblogs
locations within the cell and the actual distribution whichis not
strictly uniform. On the other hand,MLS is shown to achieve 60-
90% storage saving with 99-73% corresponding query accuracy at
α = 0.2. The lowest achieved accuracy is 52% atβ = 1 andα =
0.9 which is much higher than the theoretical bound.

Query Evaluation: Mercury shows that its spatial and tem-
poral pruning are both very effective and significantly dominate
the naive approaches. Also, the temporal pruning is more effective
than spatial pruning even for large values ofα (up to 0.8). The
average query latency, when using both spatial and temporal
pruning, for most parameters setup is 4 msec.

9.2 Adaptive Load Shedding

In this section, we evaluate the effectiveness ofVenusadaptive load
shedding module. We compare the two variations ofVenusindex
with adaptive load shedding employed: (a)β-LS (Section 8.1),
denoted asVLS-β, and (b)γ-LS (Section 8.2), denoted asVLS-γ,
with three alternatives ofMercury [6] index (as in Section 9.1).

9.2.1 Effect on Querying and Storage

Figure 3 shows the effect ofVenusadaptive load shedding on
both storage overhead and query accuracy with varyingα. For
a wide range of varyingα, Figure 3 shows the superiority of
VLS-β andVLS-γ, for α > 0, in saving a significant amount of
storage (up to 80%) while keeping almost perfect accuracy (more
than 99%). This is applicable even for large values ofα (up to
0.9) which is a significant enhancement overMercuryalternatives
(MST and MLS). With increasingα, MST and MLS keep more
data as the spatial dimension is getting increasing weight in the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

relevance score and hence older data are kept to account for being
spatially close to incoming queries. However, asVLS-β andVLS-
γ take the query spatial distribution into account and monitor the
actual useful data localized per region instead of using a global
parameter, they can smartly figure out almost all data that are not
contributing to query answers and hence shed up to 80% without
affecting the query accuracy.MST andMLS cannot sustain such
large savings forα ≥ 0.4.

On the contrary to largeα values, forα = 0, VLS-β and
VLS-γ come with a bit extra storage overhead,14%, and17%,
respectively, compared to11% in bothMSTandMLS, to increase
the accuracy from∼ 95% to more than99%. This is a result of the
heuristic discussed in Section 8.2 which prevents cancellation of
VLS-β andVLS-γ effect and hence they can automatically discover
which data are useful for the incoming queries to keep them. This
specific point, atα = 0, shows thatVLS-β andVLS-γ are adaptive
so that they keep more data when needed as well as shedding
useless data if exists.

Figure 4 shows the effect of varyingT on storage and ac-
curacy. For small values ofT , VLS-γ encounters slightly more
storage overhead thanMLS. However, with increasingT , VLS-γ
storage overhead becomes comparable toMLS while consistently
maintains more than 99% accuracy.VLS-β dominates all other
alternative for all values ofT with almost perfect accuracy.

As VLS-β andVLS-γ come with an overhead during the query
processing, Figure 5 shows the query latency with varyingk
andR. Both figures show higher query latency for bothVLS-β
and VLS-γ over MST and MLS. It is also noticeable thatVLS-γ
encounters higher latency thanVLS-β due to the computational
cost of calculatingγ. However, the latency increase is acceptable
and does not exceed 3 ms for large values ofR = 256 miles,
where many index cells are involved inβ andγ computations. For
average values ofk andR, the increase in the order of 1 ms on
the average. In nutshell,VLS-β andVLS-γ incur 12-14% increase
in query latency to save up to 80% of storage, for wide ranges of
parameters values, without compromising the accuracy. The90,
95, and 99 percentiles of query latencies for all alternatives are
under 15, 30, and 50 ms, respectively. More detailed analysis for
query latency percentiles can be revised in Appendix C.

For VLS-γ, the presented results showmin estimation method,
which is more conservative thanaveragemethod and leads to
higher storage overhead. Generally, for all parameter values,aver-
agemethod behave pretty similar tominmethod and thus the same
analysis of results would be applicable. For space limitations,
results foraverageestimation method are moved to Appendix C.1.

9.2.2 Effect on Index Maintenance
With a significant amount of data shed from the index,VLS-β
andVLS-γ significantly improve the index maintenance overhead.
Figure 6 shows index insertion time with varying tweet arrival
rate,k, α, andR. For all the parameter values,VLS-β andVLS-
γ show lower insertion time due to the lighter index contents.
As Figure 6(a) shows,VLS-γ is able to digest 64K microblog in
∼ 400 ms whileVLS-β does in less than a quarter of a second. For
different values of tweet arrival rate,k, andR, VLS-γ insertion
time is slightly better thanMLS while VLS-β is significantly
better than both of them. However, for a wide range ofα values,
both VLS-β and VLS-γ work significantly better thanMLS as
Figure 6(c) shows. This shows the superiority ofVLS-β andVLS-
γ and that the decrease in insertion time is proportional with
the storage savings, so the lighter the index contents the more

efficient it digests more data. It worth mentioning that the efficient
bulk insertion techniques used inVenus significantly increase
digestion rates four times for all alternatives. Detailed numbers
and evaluation are presented in Appendix C.4.

9.3 Top-k Ranking

In this section, we study the effect of employing different ranking
functions onVenuscomponents. Specifically, the ranking function
is affecting: (1) Index size tuning, as the valuesTc and Tc,β

depend on the employed ranking function, and (2) the spatio-
temporal pruning during the query processing. In this section, we
study the effect of employing the linear and exponential functions
(defined in Section 3.3), namelyF-Lin and F-Exp, respectively,
and their curves are denoted throughout the section by the suffixes
-Lin and-Exp, respectively.

9.3.1 Ranking Effect on Index Size and Query Accuracy

Table 1 summarizes the equations of different system components
using both linear and exponential scoring. Mathematically, the
valuesTc and Tc,β of F-Lin (Equations 1 and 3) give tighter
temporal coverage thanF-Exp(Equations 2 and 4). Consequently,
Figures 7-9 show thatF-Exp encounters more storage overhead
than F-Lin for varying T , α and β. In Figure 7(a), F-Exp
encounters larger storage overhead for smaller values ofT while
approachF-Lin storage with increasingT . However, for allT
values,F-Exp achieves perfect accuracy that is almost 100% for
bothMSTandMLS. The same observations hold for varyingα and
β in Figures 8 and 9, respectively. ForT , α andβ, the increase in
F-Expstorage overhead between 7-15% more thanF-Lin.

Two interesting points to discuss are atα = 0 and atβ = 1 in
Figures 8 and 9, respectively. At these points, bothTc andTc,β

almost vanish and the index barely stores only the most recent
k microblogs in each region, which makes the query accuracy
of F-Lin drops significantly, as shown in Figures 8(b) and 9(b),
especially atβ = 1 for large values ofα where the spatial score is
more important than the temporal score and so old microblogs
matter. However, in all these cases,F-Exp accuracy remains
almost perfect. This shows thatF-Exp accuracy improvement is
not a result for only storing more data in the index. Instead,the
exponential scoring quickly demotes further microblogs, in either
space, time or both, and hence less microblogs are needed to get
the accurate answer. This is shown clearly while analyzing spatio-
temporal pruning in Section 9.3.2.

Finally, it worth mentioning that employingVLS-β andVLS-γ
with F-Expgives pretty similar numbers to those in Section 9.2 in
both storage overhead and query accuracy. For space limitations,
we moved these results to Appendix C.2.

9.3.2 Ranking Effect on Spatio-temporal Query Pruning

Figure 10 compares the performance ofVenusquery processor
employing either only spatial pruning, denoted asPR, temporal
pruning, denoted asPT, or spatio-temporal pruning, denoted as
P, for both F-Lin and F-Exp. In Figure 10(a), query latency of
all alternatives ofF-Exp are bounded betweenPT-Lin andP-Lin,
except for large values ofR (> 64) where P-Exp has a lower
latency thanP-Lin. This behavior can be interpreted by discussing
two contradicting factors: (1) The computation cost, and (2)the
pruning effectiveness of each ranking function. First, thecost of
computing exponential score byF-Exp is higher than the linear
score byF-Lin due to the higher mathematical complexity. As

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

 0

 100

 200

 300

 400

 500

 0.25 0.5 1 2 4 8 16 32 64

In
s
e
rt

io
n
 T

im
e
 (

m
s
)

Arrival Rate (K/sec)

MST
MLS

VLS-β
VLS-γ

(a) Varying arrival rate

 4

 8

 12

 16

 20

 24

 28

 10 50 100

In
s
e
rt

io
n
 T

im
e
 (

m
s
)

k

MST
MLS

VLS-β
VLS-γ

(b) Varyingk

 0

 5

 10

 15

 20

 25

 30

 0 0.2 0.4 0.6 0.8 1

In
s
e
rt

io
n
 T

im
e
 (

m
s
)

α

MST
MLS

VLS-β
VLS-γ

(c) Varyingα

 4

 8

 12

 16

 20

 24

 28

 0.25 1 4 16 64 256

In
s
e
rt

io
n
 T

im
e
 (

m
s
)

R (miles)

MST
MLS

VLS-β
VLS-γ

(d) VaryingR

Fig. 6. Index insertion time.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 3 6 9 12

S
to

ra
g

e
 O

v
e

rh
e

a
d

 (
%

)

T (hr)

MT
MST-Lin
MLS-Lin

MST-Exp
MLS-Exp

(a) Storage Overhead

 95

 96

 97

 98

 99

 100

 3 6 9 12

Q
u

e
ry

 A
c
c
u

ra
c
y
 (

%
)

T (hr)

MT
MST-Lin
MLS-Lin

MST-Exp
MLS-Exp

(b) Query Accuracy

Fig. 7. Ranking effect on storage vs. accuracy varying T

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.2 0.4 0.6 0.8 1

S
to

ra
g

e
 O

v
e

rh
e

a
d

 (
%

)

α

MT
MST-Lin
MLS-Lin

MST-Exp
MLS-Exp

(a) Storage Overhead

 93

 94

 95

 96

 97

 98

 99

 100

 0 0.2 0.4 0.6 0.8 1

Q
u

e
ry

 A
c
c
u

ra
c
y
 (

%
)

α

MT
MST-Lin
MLS-Lin

MST-Exp
MLS-Exp

(b) Query Accuracy

Fig. 8. Ranking effect on storage vs. accuracy varying α

this operation repeats for every single microblog, its costis not
negligible. Second,F-Exp is much more powerful in pruning the
search space. For the same increase in either spatial or temporal
distance, the exponential score is demoted rapidly and thusthe
search can quit much earlier than the linear score. Consequently,
in Figure 10(a), forR values≤ 64, the expensive computation
cost ofF-Exp makes all its alternatives have higher latency than
P-Lin while its pruning power make them better than bothPT-Lin
and PR-Lin. For larger values ofR (> 64), when many cells
are involved in the query, the pruning power ofF-Exp makes
more difference and givesP-Exp a latency of 11 ms forR =
256 compared to 16 ms forP-Lin. Consistently, bothPR-Exp
andPT-Exphave query latency as low asP-Lin which shows two
conclusions: (a) Pruning a single dimension using the exponential
score gives the same latency as pruning both dimensions using the
linear score. (b) UnlikeF-Lin, all F-Exp alternatives have query
latency within a small margin which shows that pruning either
spatial or temporal dimension has the same effectiveness, on the
contrary toF-Lin in which the temporal pruning is much more
effective than the spatial pruning (see [6] or Appendix C.5 for full
analysis).

Figure 10(b) shows the query latency varyingα. In this figure,
the computation cost ofF-Exp dominates the pruning power (as
defaultR value is30 miles) and so all alternatives ofF-Exphave
slightly higher latency thanP-Lin but still lower thanPR-Linand
PT-Lin. The figure also shows the effectiveness of both spatial and
temporal pruning usingF-Exp.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.2 0.4 0.6 0.8 1

S
to

ra
g

e
 O

v
e

rh
e

a
d

 (
%

)

β

MLS-Lin-α0.4
MLS-Lin-α0.9

MLS-Exp-α0.4
MLS-Exp-α0.9

(a) Storage Overhead

 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

 0 0.2 0.4 0.6 0.8 1

Q
u

e
ry

 A
c
c
u

ra
c
y
 (

%
)

β

MLS-Lin-α0.4
MLS-Lin-α0.9

MLS-Exp-α0.4
MLS-Exp-α0.9

(b) Query Accuracy

Fig. 9. Ranking effect on storage vs. accuracy varying β

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0.25 1 4 16 64 256

Q
u

e
ry

 L
a

te
n

c
y
 (

m
s
)

R (miles)

PR-Lin
PT-Lin

P-Lin
PR-Exp
PT-Exp

P-Exp

(a) R vs. Query Latency

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 0.2 0.4 0.6 0.8 1

Q
u

e
ry

 L
a

te
n

c
y
 (

m
s
)

α

PR-Lin
PT-Lin

P-Lin
PR-Exp
PT-Exp

P-Exp

(b) α vs. Query Latency

Fig. 10. Ranking effect on query pruning

10 CONCLUSION

We have presentedVenus; a system for real-time support of spatio-
temporal queries on microblogs, where users request a set ofrecent
k microblogs near their locations.Venusworks under a challeng-
ing environment, where microblogs arrive with very high arrival
rates.Venusemploys efficient in-memory indexing to support up to
64K microblogs/second and spatio-temporal pruning techniques to
provide real-time query response of 4 msec. In addition, effective
load shedding modules are employed to smartly shed the useless
data while providing almost perfect query accuracy.

REFERENCES

[1] “Twitter Statistics,” http://expandedramblings.com/index.php/march-
2013-by-the-numbers-a-few-amazing-twitter-stats/, 2013.

[2] “Twitter Data Grants, 2014,” https://blog.twitter.com/2014/introducing-
twitter-data-grants.

[3] “Facebook Statistics,” https://www.facebook.com/business/power-of-
advertising, 2012.

[4] “After Boston Explosions, People Rush to Twitter for Breaking
News,” http://www.latimes.com/business/technology/la-fi-tn-
after-boston-explosions-people-rush-to-twitter-for-breaking-news-
20130415,0,3729783.story, 2013.

[5] W. G. Aref and H. Samet, “Efficient Processing of Window Queries in
the Pyramid Data Structure,” inPODS, 1990.

[6] A. Magdy, M. F. Mokbel, S. Elnikety, S. Nath, and Y. He, “Mercury: A
Memory-Constrained Spatio-temporal Real-time Search on Microblogs,”
in ICDE, 2014, pp. 172–183.

[7] G. Lee, J. Lin, C. Liu, A. Lorek, and D. V. Ryaboy, “The UnifiedLogging
Infrastructure for Data Analytics at Twitter,”PVLDB, vol. 5, no. 12, pp.
1771–1780, 2012.

[8] J. Lin and A. Kolcz, “Large-scale machine learning at twitter,” in
SIGMOD, 2012.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

[9] M. Busch, K. Gade, B. Larson, P. Lok, S. Luckenbill, and J. Lin,
“Earlybird: Real-Time Search at Twitter,” inICDE, 2012.

[10] C. Chen, F. Li, B. C. Ooi, and S. Wu, “TI: An Efficient Indexing
Mechanism for Real-Time Search on Tweets,” inSIGMOD, 2011, pp.
649–660.

[11] L. Wu, W. Lin, X. Xiao, and Y. Xu, “LSII: An Indexing Structure for
Exact Real-Time Search on Microblogs,” inICDE, 2013.

[12] J. Yao, B. Cui, Z. Xue, and Q. Liu, “Provenance-based Indexing Support
in Micro-blog Platforms,” inICDE, 2012.

[13] A. Marcus, M. S. Bernstein, O. Badar, D. R. Karger, S. Madden, and
R. C. Miller, “Tweets as Data: Demonstration of TweeQL and TwitInfo,”
in SIGMOD, 2011.

[14] A. Bermingham and A. F. Smeaton, “Classifying Sentiment inMi-
croblogs: Is Brevity an Advantage?” inCIKM, 2010.

[15] E. Meij, W. Weerkamp, and M. de Rijke, “Adding semantics tomicroblog
posts,” inWSDM, 2012.

[16] G. Mishne and J. Lin, “Twanchor Text: A Preliminary Study ofthe Value
of Tweets as Anchor Text,” inSIGIR, 2012.

[17] C. C. Cao, J. She, Y. Tong, and L. Chen, “Whom to Ask? Jury Selection
for Decision Making Tasks on Micro-blog Services,”PVLDB, 2012.

[18] J. Sankaranarayanan, H. Samet, B. E. Teitler, M. D. Lieberman, and
J. Sperling, “TwitterStand: News in Tweets,” inGIS, 2009.

[19] H. Abdelhaq, C. Sengstock, and M. Gertz, “EvenTweet: Online Localized
Event Detection from Twitter,” inVLDB, 2013.

[20] R. Li, K. H. Lei, R. Khadiwala, and K. C.-C. Chang, “TEDAS: ATwitter-
based Event Detection and Analysis System,” inICDE, 2012.

[21] M. Mathioudakis and N. Koudas, “TwitterMonitor: Trend Detection over
the Twitter Stream,” inSIGMOD, 2010.

[22] T. Sakaki, M. Okazaki, and Y. Matsuo, “Earthquake shakes twitter users:
Real-time event detection by social sensors,” inWWW, 2010.

[23] V. K. Singh, M. Gao, and R. Jain, “Situation Detection andControl using
Spatio-temporal Analysis of Microblogs,” inWWW, 2010.

[24] J. Lin and G. Mishne, “A Study of ”Churn” in Tweets and Real-Time
Search Queries,” inICWSM, 2012.

[25] D. Ramage, S. T. Dumais, and D. J. Liebling, “Characterizing Microblogs
with Topic Models,” inICWSM, 2010, pp. 130–137.

[26] A. Dong, R. Zhang, P. Kolari, J. Bai, F. Diaz, Y. Chang, Z. Zheng, and
H. Zha, “Time is of the essence: Improving recency ranking using twitter
data,” inWWW, 2010.

[27] I. Uysal and W. B. Croft, “User Oriented Tweet Ranking: A Filtering
Approach to Microblogs,” inCIKM, 2011.

[28] J. Hannon, M. Bennett, and B. Smyth, “Recommending twitter users to
follow using content and collaborative filtering approaches,” in RecSys,
2010.

[29] O. Phelan, K. McCarthy, and B. Smyth, “Using twitter to recommend
real-time topical news,” inRecSys, 2009.

[30] K. Watanabe, M. Ochi, M. Okabe, and R. Onai, “Jasmine: A Real-
time Local-event Detection System based on Geolocation Information
Propagated to Microblogs,” inCIKM, 2011.

[31] A. Marcus, M. S. Bernstein, O. Badar, D. R. Karger, S. Madden, and
R. C. Miller, “Twitinfo: Aggregating and Visualizing Microblogs for
Event Exploration,” inCHI, 2011.

[32] ——, “Processing and Visualizing the Data in Tweets,”SIGMOD Record,
vol. 40, no. 4, 2012.

[33] L. Hong, A. Ahmed, S. Gurumurthy, A. J. Smola, and K. Tsioutsiouliklis,
“Discovering Geographical Topics In The Twitter Stream,” inWWW,
2012.

[34] C. Budak, T. Georgiou, D. Agrawal, and A. E. Abbadi, “GeoScope:
Online Detection of Geo-Correlated Information Trends in Social Net-
works,” in VLDB, 2014.

[35] A. Skovsgaard, D. Sidlauskas, and C. S. Jensen, “ScalableTop-k Spatio-
temporal Term Querying,” inICDE, 2014, pp. 148–159.

[36] Y.-Y. Chen, T. Suel, and A. Markowetz, “Efficient Query Processing in
Geographic Web Search Engines,” inSIGMOD, 2006.

[37] G. Cong, C. S. Jensen, and D. Wu, “Efficient Retrieval of theTop-k Most
Relevant Spatial Web Objects,”PVLDB, vol. 2, no. 1, 2009.

[38] Z. Li, K. C. K. Lee, B. Zheng, W.-C. Lee, D. L. Lee, and X. Wang,
“IR-Tree: An Efficient Index for Geographic Document Search,”TKDE,
vol. 23, no. 4, 2011.

[39] D. Wu, M. L. Yiu, G. Cong, and C. S. Jensen, “Joint Top-K Spatial
Keyword Query Processing,”TKDE, vol. 24, no. 10, 2012.

[40] D. Zhang, Y. M. Chee, A. Mondal, A. K. H. Tung, and M. Kitsuregawa,
“Keyword Search in Spatial Databases: Towards Searching by Docu-
ment,” in ICDE, 2009.

[41] L. Chen, G. Cong, C. S. Jensen, and D. Wu, “Spatial Keyword Query
Processing: An Experimental Evaluation,” inVLDB, 2013.

[42] S. J. Kazemitabar, U. Demiryurek, M. H. Ali, A. Akdogan, andC. Sha-
habi, “Geospatial Stream Query Processing using Microsoft SQL Server
StreamInsight,”PVLDB, vol. 3, no. 2, 2010.

[43] W. Liu, Y. Zheng, S. Chawla, J. Yuan, and X. Xing, “Discovering Spatio-
temporal Causal Interactions in Traffic Data Streams,” inKDD, 2011.

[44] E. Meskovic, Z. Galic, and M. Baranovic, “Managing MovingObjects in
Spatio-temporal Data Streams,” inMDM, 2011.

[45] M. F. Mokbel and W. G. Aref, “SOLE: Scalable On-Line Execution of
Continuous Queries on Spatio-temporal Data Streams,”VLDB Journal,
vol. 17, no. 5, 2008.

[46] D. Zhang, D. Gunopulos, V. J. Tsotras, and B. Seeger, “Temporal and
Spatio-temporal Aggregations over Data Streams using MultipleTime
Granularities,”Information Systems, vol. 28, no. 1-2, 2003.

[47] M. Koubarakis, T. Sellis, A. U. Frank, S. Grumbach, R. H. Gting,
C. S. Jensen, and N. Lorentzos,Spatio-Temporal Databases: The
CHOROCHRONOS Approach. Springer, 2003.

[48] S. Shekhar and S. Chawla,Spatial Databases: A Tour. Prentice Hall,
2003.

[49] R. A. Finkel and J. L. Bentley, “Quad Trees: A Data Structure for
Retrieval on Composite Keys,”ACTA, vol. 4, no. 1, 1974.

Amr Magdy is a Ph.D. candidate at the De-
partment of Computer Science and Engineer-
ing, University of Minnesota - Twin Cities. He
received his M.Sc. at the same department in
2013. His research interests include big data
management, social data management, and
spatial data management. His current research
focus is managing microblogs data. His research
work has been incubated by Bing GeoSpatial
team and has been selected among best papers
in ICDE 2014. He has been selected a finalist for

Microsoft Research PhD Fellowship 2014-2016.

Mohamed F. Mokbel (Ph.D., Purdue University,
USA, MS, B.Sc., Alexandria University, Egypt)
is an associate professor at University of Min-
nesota. His current research interests focus on
providing database and platform support for
spatio-temporal data, location-based services
2.0, personalization, and recommender sys-
tems. His research work has been recognized
by four best paper awards at IEEE MASS 2008,
IEEE MDM 2009, SSTD 2011, and ACM Mo-
biGIS Workshop 2012, and by the NSF CAREER

award 2010. Mohamed is/was general co-chair of SSTD 2011, program
co-chair of ACM SIGSPAITAL GIS 2008-2010, and MDM 2014, 2011.
He has served in the editorial board of ACM Transactions on Spatial Al-
gorithms and Systems, IEEE Data Engineering Bulletin, Distributed and
Parallel Databases Journal, and Journal of Spatial Information Science.
Mohamed has held various visiting positions at Microsoft Research,
USA, Hong Kong Polytechnic University, and Umm Al-Qura University,
Saudi Arabia. Mohamed is an ACM Senior and IEEE Senior member
and a founding member of ACM SIGSPATIAL. He is currently serving
as an elected chair of ACM SIGSPATIAL. For more information, please
visit: www.cs.umn.edu/∼mokbel

Sameh Elnikety is a researcher at Microsoft Re-
search in Redmond, Washington. He received
his Ph.D. from the Swiss Federal Institute of
Technology (EPFL) in Lausanne, Switzerland,
and M.S. from Rice University in Houston, Texas.
His research interests include distributed server
systems, and database systems. Samehs work
on database replication received the best paper
award at Eurosys 2007.

Suman Nath is a senior researcher at Mi-
crosoft Research in Redmond, Washington. He
received his M.S. and Ph.D. from Carnegie Mel-
lon University (CMU). His research interests
include sensor/time-series data management,
data privacy and security, and flash memory. His
research work has been recognized by best pa-
per awards at BaseNets Workshop 2004, NSDI
2006, ICDE 2008, SSTD 2011, Grace Hopper
2012, and MobiSys 2012.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 15

Yuxiong He is a researcher at Microsoft Re-
search in Redmond, Washington. She received
her Ph.D. in Computer Science from Singapore-
MIT Alliance in 2008. Her research interests in-
clude resource management, algorithms, mod-
eling and performance evaluation of parallel
and distributed systems. Her research work has
been selected among best papers in ICDE 2014.

APPENDIX A
INDEX SIZE TUNING TIME HORIZON

This appendix aims to find the valueTc for each cellC such
that only those microblogs that have arrived inC in the lastTc

time units are kept in memory as discussed in Section 6. Per the
following Lemma,Tc is computed based on the default values of
k, R, T , andα, and uses the microblog arrival rateλc for each cell
C assuming we are using the linear scoring functions. We assume
that the locations of incoming microblogs are uniform within each
cell boundary, yet they are diverse across various cells, hence each
cell C has its own microblog arrival rateλc

Lemma 1: Given query parametersk, R, T , and α, and the
average arrival rate of microblogs in cellC, λc, the spatio-
temporal query answer from cellC can be retrieved from those
microblogs that have arrived in the lastTc time units, where:

Tc = Min

T,
α

1− α
T +

k

Min
(

Area(R)
Area(C) , 1

)

× λc

Proof: The proof is composed of three steps: First, we compute
the value ofλR as the expected arrival rate of microblogs to query
areaR, among the microblogs in cellC with arrival rateλc.
This depends on the ratio of the two areasArea(R) andArea(C).
If Area(R) < Area(C), then λR = Area(R)

Area(C)λc, otherwise, all
microblogs fromC will contribute toR, henceλR = λc. This
can be put formally as:

λR = Min

(

Area(R)

Area(C)
, 1

)

× λc

Second, we compute the shortest timeTk to form a set ofk
microblogs as an initial answer. This corresponds to the timeto
get the firstk microblogs that arrive within cellC and areaR.
SinceλR is the rate of microblog arrival inR, i.e., we receive one
microblog each 1

λR
time units, then we needTk = k

λR
time units

to receive the firstk microblogs.
Finally, we compute the maximum time intervalTc that a

microblogM within cell C and areaR can make it to the list of
top-k microblogs according to our ranking functionF . In order for
M to make it to the top-k list, M has to have a better (i.e., lower)
score than the microblogMk that has thekth (i.e., worst) score
of the initial top-k, i.e.,F (M) < F (Mk). To be conservative in
our analysis, we assume that: (a)M has the best possible spatial
score: zero, i.e.,M has the same location as the user location. In
this case,F (M) will rely only on its temporal score, i.e.,F (M)
= (1− α)Tc

T
, whereTc = NOW −M.time indicates the search

time horizonTc that we are looking for, and (b)Mk has the worst
possible spatial and temporal scores among the initialk ones.
While the worst spatial score would be one, i.e.,Mk lies on the
boundary ofR, the worst temporal score would take place ifMk

arrivesTk time units ago. So, the score ofMk can be set as:
F (Mk) = α + (1− α) k

λRT
. Accordingly, to satisfy the condition

thatF (M) < F (Mk), the following should hold:

(1− α)
Tc

T
< α+ (1− α)

k

λRT
(7)

This means that in order forM to make it to the answer list,
Tc should satisfy:

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 16

Tc <
α

1− α
T +

k

λR

By substituting the value ofλR, and boundingTc by the value
of T , as we cannot go further back in time thanT , the maximum
value ofTc would be:

Tc = Min

T,
α

1− α
T +

k

Min
(

Area(R)
Area(C) , 1

)

× λc

�

In case of exponential ranking function that is presented in
Section 3.3, the equation ofTc is given as follows:

Tc = Min

(

T,
T

w
ln[

α

1− α
(ew − 1) + e

wk

Min(Area(R)
Area(C)

,1)×λcT]

)

(8)
This equation can be derived using exactly the same steps

as in the case of linear ranking function. The proof is given as
following.
Proof: The proof is composed of exactly the same three steps as
the previous one. The first and second steps are independent of the
ranking function and gives:

λR = Min

(

Area(R)

Area(C)
, 1

)

× λc

Tk =
k

λR

Then, we compute the maximum time intervalTc that a
microblogM within cell C and areaR can make it to the list
of top-k microblogs according to the exponential ranking function
F . In order forM to make it to the top-k list, M has to have a
better (i.e., lower) score than the microblogMk that has thekth
(i.e., worst) score of the initial top-k, i.e.,F (M)< F (Mk). To be
conservative in our analysis, we assume that: (a)M has the best
possible spatial score: zero, i.e.,M has the same location as the
user location. In this case,F (M) will rely only on its temporal
score, i.e.,F (M) = (1−α)ew×

Tc
T whereTc = NOW −M.time

indicates the search time horizonTc that we are looking for, and
(b) Mk has the worst possible spatial and temporal scores among
the initialk ones. While the worst spatial score would be one, i.e.,
Mk lies on the boundary ofR, the worst temporal score would
take place ifMk arrivesTk time units ago. So, the score ofMk

can be set as:F (Mk) = α + (1 − α)ew×
k

λRT . Accordingly, to
satisfy the condition thatF (M) < F (Mk), the following should
hold:

(1− α)ew×
Tc
T < α+ (1− α)e

w×
k

λRT (9)

By separating the two sides and substituting the value ofλR,
and boundingTc by the value ofT , as we cannot go further back
in time thanT , the maximum value ofTc would be:

Tc = Min

(

T,
T

w
ln[

α

1− α
(ew − 1) + e

wk

Min(Area(R)
Area(C)

,1)×λcT]

)

(10)

�

APPENDIX B
LOAD SHEDDING TIME HORIZON AND ACCURACY

LOSS

This appendix aims to find the valueTc,β for each cellC, such
that only those microblogs that have arrived inC in the lastTc,β

time units are kept in memory, and analyze the accuracy loss of the
load shedding module as discussed in Section 7. We first derive
the value ofTc,β in B.1 then we analyze the accuracy loss in B.2.

B.1 Storage Saving

Building on the derivation ofTc in Appendix A, and assuming
we use the linear scoring functions, we will relax the very
conservative assumption of having a query location exactlyon
the location a microblogM , and hence Equation 7 will be re-
formulated as:

αβ + (1− α)
Tc,β

T
< α+ (1− α)

k

λRT
(11)

Then, in order for a microblogM to make it to the answer list,
Tc,β should satisfy:

Tc,β <
α(1− β)

1− α
T +

k

λR

By substituting the value ofλR, and boundingTc,β by the
value ofT , the maximum value ofTc,β would be:

Tc,β = Min

T,
α(1− β)

1− α
T +

k

Min
(

Area(R)
Area(C) , 1

)

× λc

(12)

Following the same steps, we can deriveTc,β for the exponen-
tial scoring functions to be:

Tc,β = Min

(

T,
T

w
ln[

α

1− α
(ew − ewβ) + e

wk

Min(Area(R)
Area(C)

,1)λcT]

)

(13)
B.2 Accuracy Loss

Given the less conservative assumption in Equation 11, thereis
a chance to miss microblogs that could have made it to the final
result. In particular, there is an areaAx in the spatio-temporal
space that is not covered byTc,β . A microblog M in areaAx

satisfies two conditions: (1) The spatial score ofM is less thanβ,
and (2) The temporal distance ofM is betweenTc,β andTc. We
measure the accuracy loss in terms of the ratio of the area covered
byAx to the whole spatio-temporal area covered byR andT , i.e.,
R × T . This is measured by multiplying the ratios of theAx’s
temporal and spatial dimensions,Tratio andRratio, to the whole
space. The temporal ratioTratio can be measured as:

Tratio =
Tc − Tc,β

Tc

=
(α
1−α

T + k
λR

)− (α(1−β)
1−α

T + k
λR

)

(α
1−α

T + k
λR

)

This leads to : Tratio = β ×

α
1−α

T
α

1−α
T + k

λR

≤ β

This means that the temporal ratio is bounded byβ.
For the spatial ratio, consider thatAx andR are represented

by circular areas around the querying user location with radius
Radius(Ax) and Radius(R). Since a microblogM at distance

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 17

Radius(Ax) has spatial score ofβ while a microblog at distance
Radius(R) has spatial score of 1, thenRadius(Ax) = β Radius(R).
Hence, the ratio of the spatial dimension is:

Rratio =
Area(Ax)

Area(R)
=

πRadius(Ax)
2

πRadius(R)2
=

β2Radius(R)2

Radius(R)2
= β2

Hence, the accuracy loss can be formulated as:

AccuracyLossβ = Tratio ×Rratio ≤ β3 (14)

This shows a cubic accuracy loss in terms ofβ, e.g., if β =
0.3, we have maximum of 2.7% loss in accuracy for 30% storage
saving.

For the exponential scoring function, the areaAx in the spatio-
temporal space would be an area bounded by two exponential
curves and hence its area can be calculated using integration un-
der the bounded area. However, roughly, expelling exponentially
scored microblogs would lead to much less accuracy loss as a
slight increase in either spatial or temporal distances would lead
to exponential decay in the relevance score. The experimental
evaluation clearly verifies this observation.

APPENDIX C
ADDITIONAL EXPERIMENTAL RESULTS

In this appendix, we provide additional experimental results that
do not fit in the main paper contents due to space limitations.

C.1 Adaptive Load Shedding Additional Experiments

In this section, we present the results ofVenusadaptiveγ-load
shedding withaverageestimation method (denoted asVLS-γ-Avg)
compared to adaptiveβ-load shedding (denoted asVLS-β) and
adaptiveγ-load shedding withmin estimation method (denoted as
VLS-γ-Min) that are presented in Section 9.2.1. Generally,VLS-γ-
Avgbehavior is similar toVLS-γ-Min with minor differences in ac-
tual numbers of storage overhead and query accuracy. Particularly,
Figure 11 shows the effect ofVenusadaptive load shedding on
both storage overhead and query accuracy with varyingα. Forα
ranges from0 to 0.9, Figure 11(a) shows that allVenusalternatives
of adaptive load shedding techniques are able to save 59-86%
of storage overhead, which is a significant improvement, while
keeping almost perfect query accuracy as shown in Figure 11(b).
In this range ofα, VLS-γ-Avg consistently behaves at least as
good asVLS-γ-Min and at most as good asVLS-β. For storage
overhead, Figure 11(a) shows thatVLS-γ-Avg encounter slightly
higher storage overhead thanVLS-β and slightly lower thanVLS-
γ-Min for all values ofα. This is mainly becauseVLS-γ-Min
is more conservative in estimating the value of load shedding
parameterγ and hence stores more microblogs and then encounter
higher storage overhead. For query accuracy, Figure 11(b) shows
that performance of all alternatives for allα changes in a very
narrow range that is very close the perfect accuracy. Yet,VLS-
γ-Avg and VLS-γ-Min give similar accuracy forα ranges from
0 to 0.4 while VLS-γ-Avg and VLS-β give similar accuracy for
α > 0.4.

Figure 12 shows the effect of varyingT on storage and
accuracy. For small values ofT , Figure 12(a) shows thatVLS-
γ-Avgencounter storage similar toVLS-β which is 10% less than
VLS-γ-Min. With enlargingT (at T =12 hours),VLS-γ-Avg and
VLS-γ-Min behave the same with 40% storage overhead (which
means 60% storage saving). Figure 12(b) shows that for all values
of T , all alternatives still come with> 99% query accuracy even
for small T values (atT=3 hours). The accuracy increases with
increasingT value to reach almost 100% atT =12 hours.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.2 0.4 0.6 0.8 1

S
to

ra
g

e
 O

v
e

rh
e

a
d

 (
%

)

α

VLS-β
VLS-γ-Min
VLS-γ-Avg

(a) Storage Overhead

 98

 99

 100

 0 0.2 0.4 0.6 0.8 1

Q
u

e
ry

 A
c
c
u

ra
c
y
 (

%
)

α

VLS-β
VLS-γ-Min
VLS-γ-Avg

(b) Query Accuracy

Fig. 11. Effect of α on storage vs. accuracy - average estimation.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 3 6 9 12

S
to

ra
g

e
 O

v
e

rh
e

a
d

 (
%

)

T (hr)

VLS-β
VLS-γ-Min
VLS-γ-Avg

(a) Storage Overhead

 97

 98

 99

 100

 3 6 9 12

Q
u

e
ry

 A
c
c
u

ra
c
y
 (

%
)

T (hr)

VLS-β
VLS-γ-Min
VLS-γ-Avg

(b) Query Accuracy

Fig. 12. Effect of T on storage vs. accuracy - average estimation.

C.2 Top-k Ranking Additional Experiments

This section presents the effect of employing exponential ranking
function combined withVenusadaptiveγ-load shedding (with
min estimation method) and adaptiveβ-load shedding, denoted
as VLS-β and VLS-γ, respectively. This represents an extension
for the results presented in Section 9.3 evaluating the effect of
employing exponential ranking function on different components
of the system.

As mentioned in Section 9.3.1, employingVLS-β and VLS-
γ with both linear and exponential ranking functions give pretty
similar performance. This is clearly shown in Figures 13 and14.
Figure 13 showsVLS-β and VLS-γ with employing both linear
and exponential ranking function (denoted with suffixLin andExp,
respectively) with different values ofα. The figure shows the same
performance for both ranking functions in both storage overhead
(in Figure 13(a)) and query accuracy (in Figure 13(b)) for different

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.2 0.4 0.6 0.8 1

S
to

ra
g

e
 O

v
e

rh
e

a
d

 (
%

)

α

VLS-β-Lin
VLS-γ-Lin

VLS-β-Exp
VLS-γ-Exp

(a) Storage Overhead

 97

 98

 99

 100

 0 0.2 0.4 0.6 0.8 1

Q
u

e
ry

 A
c
c
u

ra
c
y
 (

%
)

α

VLS-β-Lin
VLS-γ-Lin

VLS-β-Exp
VLS-γ-Exp

(b) Query Accuracy

Fig. 13. Effect of α on storage vs. accuracy - exponential ranking.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 3 6 9 12

S
to

ra
g

e
 O

v
e

rh
e

a
d

 (
%

)

T (hr)

VLS-β-Lin
VLS-γ-Lin

VLS-β-Exp
VLS-γ-Exp

(a) Storage Overhead

 97

 98

 99

 100

 3 6 9 12

Q
u

e
ry

 A
c
c
u

ra
c
y
 (

%
)

T (hr)

VLS-β-Lin
VLS-γ-Lin

VLS-β-Exp
VLS-γ-Exp

(b) Query Accuracy

Fig. 14. Effect of T on storage vs. accuracy - exponential ranking.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 18

values ofα. This basically all the analysis and conclusions drawn
in Section 9.2 forVLS-β and VLS-γ with linear ranking apply
for the exponential ranking as well. This performance similarity
applies also for different values ofT that are shown in Figure 14.

C.3 Time-based Partitioning

In this section, we show the effect of applying temporal partition-
ing to our index. Specifically, the idea is to partition incoming
data based on their timestamp inn partitions, where each partition
indexes data ofT

n
time units. Each temporal partition employs a

spatial index just like the one described throughout the paper. In-
coming data are continuously digested in the partition thatindexes
the most recent data. EveryT

n
time units, the currently active

partition is concluded and a new empty partition is introduced
to digest the new data. A partition is completely wiped from the
memory when its most recent microblog isT time units old.

With the described temporal partitioning to our index, our
insertion techniques remain the same and would be applied to
currently active partition that digest incoming data. However, our
deletion technique would need a small adaptation. Specifically, our
deletion depends on removing useless microblogs from a certain
index cell while visiting this cell to insert new data. The oldness
of removed microblogs is varying from cell to another based on
the density of microblogs in the spatial locality of the cell. To
apply this technique to the temporally partitioned index, we need
to perform two steps. First, we apply this deletion criteriato the
active partition on inserting new data. Second, checking corre-
sponding cells in older partitions to check existence of microblogs
to remove. As the second step is expected to put a significant
overhead, we experiment in this section two alternatives. The
first alternative represents the temporally partitioned index with
the deletion process employs the two previous steps, we callthis
proactive deletionas it proactively deletes any microblog that can
be kicked out. The second alternative represents the temporally
partitioned index with the deletion process employs only the first
step to get rid of useless microblogs only in the active partition and
defer deleting older microblogs to the periodic cleanup process
that wipe out a complete partition everyT

n
time units, we call this

deferred deletion. We next experiment the temporally partitioned
index (settingn=4) with both proactive and deferred deletion
comparing it to our current technique that use only one spatial
index (i.e., settingn =1). Throughout this section, our spatial
index is denoted asMST, while the temporally partitioned index
with proactive deletion and deferred deletion are denoted as MST-
TBP-PDandMST-TBP-DD, respectively.

Figure 15 shows the effect of changingα on both indexes
in terms of insertion time, storage overhead, and query latency.
Figure 15(a) shows insertion time with different values ofα. The
figure shows a significant insertion overhead forMST-TBP-PDthat
leads to an order of magnitude higher insertion time due to the
expensive piggybacked deletion that accesses multiple indexes to
get rid of the useless microblogs. This overhead is consistent with
all values ofα and dominates bothMST andMST-TBP-DD. Fig-
ure 15(b) omits the dominating insertion time ofMST-TBP-PDand
shows onlyMST andMST-TBP-DD. For all values ofα ≥ 0.2,
insertion overhead ofMST-TBP-DDis less thanMST because the
insertion is performed in an index that carries only one quarter
of data and hence it becomes more efficient, due to less number
of index levels to be navigated. In addition, whileMST insertion
time is increasing with increasingα (as the index accumulates
more microblogs and hence encounter more levels and higher

insertion overhead), the insertion time ofMST-TBP-DDdecreases
for α ranges from 0-0.2 and then it saturates forα ≥ 0.2. The
reason of that behavior is that for small values ofα, many recent
microblogs are deleted and hence a lot of deletion operations are
performed on the most recent partition that is accessed byMST-
TBP-DD. However, with increasingα, more recent microblogs are
kept and hence almost no deletions performed on insertion and all
deletions are deferred to the periodic cleanup, which reduce the
insertion overhead. This comes with a cost in storage overhead
as shown in Figure 15(c). The figure shows that storage overhead
of MST-TBP-PDis almost equals the storage overhead ofMST,
with a non-noticeable increase due to the overhead of multiple
indexes storage. However,MST-TBP-DDcomes with significant
storage overhead increase that ranges from 10-50%, depending on
value ofα. This shows a significant overhead increase that is saved
through employing one index as inMST. Analyzing both insertion
overhead (whereMST-TBP-PDis dominant) and storage overhead
(whereMST-TBP-DDgives significant higher values) shows that
MST is a smart compromise that achieve good performance in both
insertion overhead and storage overhead. However, Figure 15(d)
shows an advantage forMST-TBP-PDand MST-TBP-DDover
MST which is a lower average query latency. This is mainly
caused by searching a lighter index segments and hence process
less data to retrieve the final answer. Table 2 shows the 90, 95, and
99 percentiles of query latency of the three alternatives. We can
see that allMST-TBP-PDandMST-TBP-DDpercentiles are under
30 ms while allMSTpercentiles are under 50 ms.

Query Latency (ms)
90% 95% 99%

α = 0
MST 6 20 34

MST-TBP-PD 2.2 2.9 11
MST-TBP-DD 2.3 3.5 15.3

α = 0.2
MST 12.3 28.8 40.8

MST-TBP-PD 3.3 4.2 10
MST-TBP-DD 3.3 4.3 11.5

α = 0.4
MST 12.8 25.8 35.4

MST-TBP-PD 5.3 7.1 18.6
MST-TBP-DD 5 7.2 16

α = 1
MST 19.4 33.9 47

MST-TBP-PD 9.7 14.7 29.6
MST-TBP-DD 10 14.5 29.3

TABLE 2
Query Latency Percentiles varying α

Figure 16 shows the effect of changingk on both indexes
in terms of insertion time, storage overhead, and query latency.
Figure 16(a) shows insertion time with different values ofk. The
figure again shows a significant insertion overhead forMST-TBP-
PD confirming the previous findings. This overhead is also con-
sistent and dominant for all values ofk. This insertion overhead
comes with a storage saving as it proactively removes all useless
microblogs. Figure 16(b) shows that storage overhead ofMST-
TBP-PD is almost equals the storage overhead ofMST. However,
the efficient insertion ofMST-TBP-DDcomes with significant
storage overhead increase that is 100% for all values ofk. This
confirms thatMST is a smart compromise that achieve good
performance in both insertion overhead and storage overhead.
Figure 16(c), yet, shows thatMST-TBP-PDand MST-TBP-DD
have lower average query latency thanMST, for searching a lighter
index segments. Table 3 shows the 90, 95, and 99 percentiles of
query latency of the three alternatives. The table shows thatall
MST-TBP-PDand MST-TBP-DDpercentiles are around 10 ms

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 19

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 0.2 0.4 0.6 0.8 1

In
s
e
rt

io
n
 T

im
e
 (

m
s
)

α

MST
MST-TBP-PD
MST-TBP-DD

(a) Insertion Time

 5

 10

 15

 20

 25

 30

 0 0.2 0.4 0.6 0.8 1

In
s
e
rt

io
n
 T

im
e
 (

m
s
)

α

MST
MST-TBP-DD

(b) Insertion Time omitting proactive
deletion

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.2 0.4 0.6 0.8 1

S
to

ra
g
e
 O

v
e
rh

e
a
d
 (

%
)

α

MST
MST-TBP-PD
MST-TBP-DD

(c) Storage Overhead

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1

Q
u
e
ry

 L
a
te

n
c
y
 (

m
s
)

α

MST
MST-TBP-PD
MST-TBP-DD

(d) Query Latency

Fig. 15. Effect of α on temporally partitioned index.

 0

 200

 400

 600

 800

 1000

 0.25 0.5 1 2 4 8 16 32 64

In
s
e
rt

io
n
 T

im
e
 (

m
s
)

Arrival Rate (K/sec)

MT-B
MST-B

MT-I
MST-I

(a) Varying arrival rate

 20

 40

 60

 80

 100

 10 50 100

In
s
e
rt

io
n
 T

im
e
 (

m
s
)

k

MT-B
MST-B

MT-I
MST-I

(b) Varyingk

 0

 20

 40

 60

 80

 100

 120

 0 0.2 0.4 0.6 0.8 1

In
s
e
rt

io
n
 T

im
e
 (

m
s
)

α

MT-B
MST-B

MT-I
MST-I

(c) Varyingα

 20

 40

 60

 80

 100

 0.25 1 4 16 64 256

In
s
e
rt

io
n
 T

im
e
 (

m
s
)

R (miles)

MT-B
MST-B

MT-I
MST-I

(d) VaryingR

Fig. 17. Real-time Insertion Scalability.

 0

 20

 40

 60

 80

 100

 120

 10 50 100

Q
u

e
ry

 L
a

te
n

c
y
 (

m
s
)

k

NoPruning
InitPhase

PruneR
PruneT

Mercury

(a) Varyingk

 0

 10

 20

 30

 40

 50

 60

 70

 0.25 1 4 16 64 256

Q
u

e
ry

 L
a

te
n

c
y
 (

m
s
)

R (miles)

PruneR
PruneT

Mercury

(b) VaryingR

 0

 5

 10

 15

 20

 25

 30

 3 6 9 12

Q
u

e
ry

 L
a

te
n

c
y
 (

m
s
)

T (hr)

PruneR
PruneT

Mercury

(c) VaryingT

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.2 0.4 0.6 0.8 1

Q
u

e
ry

 L
a

te
n

c
y
 (

m
s
)

α

InitPhase
PruneR
PruneT

Mercury

(d) Varyingα

Fig. 18. Average query latency.

 0
 50

 100
 150
 200
 250
 300
 350
 400

 10 50 100

In
s
e
rt

io
n
 T

im
e
 (

m
s
)

k

MST
MST-TBP-PD
MST-TBP-DD

(a) Insertion Time

 40

 50

 60

 70

 80

 90

 100

 10 50 100

S
to

ra
g
e
 O

v
e
rh

e
a
d
 (

%
)

k

MST
MST-TBP-PD
MST-TBP-DD

(b) Storage Overhead

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5

 10 50 100

Q
u
e
ry

 L
a
te

n
c
y
 (

m
s
)

k

MST
MST-TBP-PD
MST-TBP-DD

(c) Query Latency

Fig. 16. Effect of k on temporally partitioned index.

while all MSTpercentiles are under 40 ms for differentk values.

C.4 Real-time Insertion Scalability

In this section, we show the scalability of index insertion tech-
niques that are proposed and applied in bothMercury [6] and
Venus. We show that by showing the performance of applying
our bulk insertion techniques, along with lazy split/mergecriteria,
versus employing a non-bulk insertion technique that inserts
microblogs one by one in the index. Figure 17 shows the insertion
time of our bulk insertion (denoted with suffixB) versus inserting

Query Latency (ms)
90% 95% 99%

k = 10
MST 4.5 12.9 19.2

MST-TBP-PD 1.3 1.8 6
MST-TBP-DD 1.2 1.7 6.1

k = 50
MST 7.7 20.2 30.5

MST-TBP-PD 2.5 3.4 9.5
MST-TBP-DD 2.6 3.6 8.4

k = 100
MST 10.5 25.3 37.8

MST-TBP-PD 3.5 4.5 11
MST-TBP-DD 3.6 4.4 11.4

TABLE 3
Query Latency Percentiles varying k

microblogs individually in the index (denoted with suffixI) for
bothMT andMST indexing alternatives that stores all microblogs
for the whole lastT time units and employMercury index size
tuning module, respectively.

Figure 17(a) shows insertion time for all alternatives with
varying tweet arrival rate per second. The bulk insertion tech-
niques,MT-B and MST-B, show a significant performance boost
which is four times faster insertion compared to inserting one
tweet at a time throughMT-I andMST-I. Specifically,MT-B can
digest up to 32,000 tweet/second whileMT-I cannot sustain for
8,000 tweet/second and can only handle few hundreds less than
this number. Similarly,MST-Bcan digest 64,000 tweet/second in
a half second whileMST-I can sustain up to few hundreds less
than 16,000 tweet/second. This shows clearly the effectiveness
of Mercury bulk insertion techniques that reduce the amortized

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 20

insertion time per microblog and so can sustain for much higher
than arrival rates.

Figures 17(b), 17(c), and 17(d) show the insertion time with
varying k, α and R, respectively. In all these figures, and for
different parameters values,MT-B and MST-B show a superior
performance over andMT-I and MST-I with three times faster
insertion time in most of the case. This supports the findingsof
Figure 17(a) and takes it a step further to show thatMercury can
handles much larger amount of microblogs per second whatever
the system parameters setting. This shows robustness ofMercury
and its successorVenusfor different query workloads.

C.5 Query Evaluation

In this section, we recall the analysis ofMercuryquery processing
techniques from [6], where we contrastMercuryquery processing
with spatio-temporal pruning against: (a)NoPruning, where all
microblogs withinR andT are processed, (b)InitPhase, where
only the initialization phase ofMercury is employed, (c)PruneR,
where only spatial pruning is employed, and (d)PruneT, where
only temporal pruning is employed. Figure 18(a) gives the effect
of varying k from 10 to 100 on the query latency. It is clear
that variants ofMercury give order of magnitude performance
over NoPruning, which shows the effectiveness of the employed
strategies. With this, we are not showing any further resultto
NoPruningas it is clearly non-competitive. Also,InitPhasegives
much worse performance thanMercury, which shows the strong
effect of thepruning phase. Finally, it is important to note that
with k = 100, Mercurygives a query latency of only 3 msec.

Figures 18(b) and 18(c) give the effect of varyingR and
T , respectively, on the query latency forMercury, PruneR, and
PruneT. Both figures show thatMercury takes advantage of both
spatial and temporal pruning to get to its query latency of up
to 4 msec for 12 hours and 64 miles ranges. IncreasingR
and T increases the query latency of all alternatives, however,
Mercury still performs much better when using its two pruning
techniques. It is also clear thatPruneTachieves better performance
thanPruneR, i.e., temporal pruning is more effective than spatial
pruning, which is a direct result of the default value ofα=0.2 that
favors the temporal dimension.

Figure 18(d) gives the effect of varyingα from 0 to 1 on
the query latency, whereMercuryconsistently has a query latency
under 4 msec, whileInitPhasehas an unacceptable performance
that varies from 15 to 35 msec. This shows the strong effect of
the pruning phase inMercury. Meanwhile, with increasingα,
the temporal boundary ofPruneR increases and hence it visits
more microblogs inside each cell. For low values ofα (< 0.5),
the number of additional microblogs visited due to increasing the
temporal boundary is more than the number of microblogs that
are pruned based on spatial pruning. This increases the overall
latency ofPruneR. Whenα ≥ 0.5, the number of microblogs that
PruneRprunes based on the spatial pruning becomes larger than
the additional visited microblogs due to enlarging the temporal
horizon. Hence,PruneRlatency becomes quickly better and beats
PruneT at α > 0.8. This means that for all values ofα <
0.8, temporal pruning is still more effective than spatial pruning.
PruneThas a stable performance with respect to varyingα. In
all cases,Mercury takes advantage of both spatial and temporal
pruning to achieve its overall performance of around 4 msec.

APPENDIX D
CONCURRENCY CONTROL

The system is adopting Single-Writer-Multiple-Reader concur-
rency model, where always a single thread is modifying the index
while multiple threads can query simultaneously. In this appendix,
we elaborate on the multi-thread contention inVenusfor different
index operations.

Insertion and deletion. While in the middle of insertion and
deletion operations, new queries may arrive toVenus. Similarly,
while a query is processed, new microblogs may be inserted or
deleted. For such concurrent actions,Venusopt not to support
transactions, but its concurrent update/insert/delete operations
preserve the integrity of the index. No update is lost. However
a query concurrent with multiple insert operations may read
some of the new microblogs and miss some of them. After the
update operations complete, any new query observes their effects
completely. The rational here is that there is nothing much to lose
from these concurrent operations, where the worst scenariowould
be that some microblogs may not make it promptly to the query
answer. So, the side effect is that it may take few (milli)seconds for
a microblogM to be available for search. For deletion operations,
it may end up that an incoming query considers microblogs that
should be deleted during the process. The worst case is that a
microblog appears in the result while it is deleted. This is due
to a very minor milliseconds time margin, which makes it very
unlikely that a deleted microblog would score high enough to
make it worthy reporting in the query answer. In general, the
effect of having such concurrent operations is minimal and does
not warrant employing any special concurrency control here, e.g.,
locking.

Splitting and merging. As described in the paper, the query
processing module employs a priority queue data structureH to
enqueue and dequeue pyramid cells in order. Insertion and deletion
from enqueued cells inH do not pose any problems here as
discussed above. However, splitting and merging in these calls
may cause severe problems. For example, if a cellC is merged
while in H , we will not be able to locate it when getting it out
from H . To avoid such cases,Venusprevents any cell from being
split or merged if it is in the priority queue structure of anycurrent
query. This is done through a simple pin counting technique that
is incremented and decremented with every enqueue and dequeue
operation fromH . The side effect here is that cells may not be split
or merged immediately once they are due. However, this does not
cause problems as cells do not stay long in any priority queuedata
structure.

